SiPM single photon time resolution measured via bi-luminescence

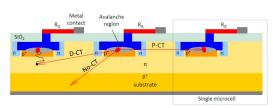
15th Vienna Conference on Instrumentation, Feb. 18-22 2019, Vienna

C. Betancourt, A. Dätwyler, P. Owen, A. Puig, N. Serra

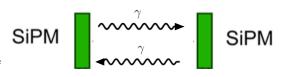
Universität Zürich

21.02.2019

Motivation

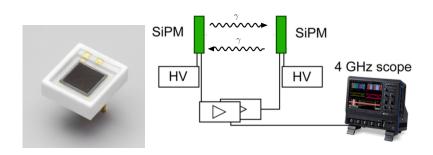

- Silicon photomultipliers (SiPM) have found widespread use in scientific experiments
 - → From HEP to Medical Science
- Characterization of such devices include:

Breakdown Voltage Cross-talk probability Dark Count Rate Photon detection efficiency Single Photon Timing Resolution (SPTR)

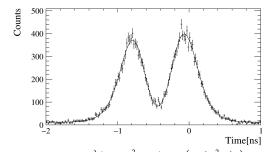

- Some measurements are easy, some require more advanced equipment
 - \rightarrow e.g. measuring the SPTR usually requires external laser sources
- Can we measure the SPTR without the need fancy equipment? Yes, via bi-luminescence!

Cross-talk and bi-luminescence

- During an avalanche, some electrons recombine producing secondary photons
- These photons can enter a neighboring cell, causing additional avalanches (Optical Cross-talk)
- ▶ Bi-luminescence refers to the process where one or more of these photons leaves the device and causes an avalanche in a neighboring device
- Our light detector is actually a light source
 - \rightarrow Can use as a source to measure single photon events



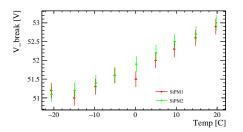
[courtesy of Hamamatsu Photonics]


Set-up

- 2x HPK S13360-3050CS (3 x 3 mm² area, 50 μ m pitch)
- Each connected to custom amplifier boards and a HV source
- ▶ Signals recorded with a 4-ch 4 GHz oscilloscope
- \blacktriangleright Set-up is housed in a freezer (not the scope!) flushed with dry air allowing for T as low as -30°C
- ▶ Waveforms are timestamped using a CFD method (optimized at 24%)

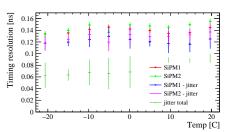
The model

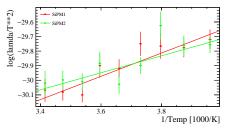
- ► The resulting $\Delta t = t_1 t_2$ distribution shows a double peaked structure
- Each peak can be described by a gaussian convoluted with and exponential
- ► The Gaussian term includes contributions from emission and absorption ($\sim \sqrt{2} \times \text{SPTR}$)
- Exponential term arises from uncertainty in the time of emission due to afterpulsing


 $f(\Delta t; \mu, \sigma \lambda) \propto e^{rac{\lambda}{2}(2\mu + \lambda \sigma^2 - 2\Delta t)} erfc\left(rac{\mu + \lambda \sigma^2 - \Delta t}{\sqrt{2}\sigma}
ight)$

 $\sigma \colon$ Uncertainty from emission and absorption process

 μ : Mean of the gaussian


 λ : Afterpulse rate

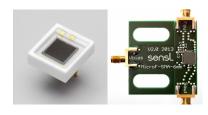

Results

- ▶ Measurements carried out from -20 to +20 $^{\circ}$ C, OV = +3 V
- ► SPTR(20°C) = $145/\sqrt{2} = 103 \pm 3$ ps → Const vs. T
- ► $\lambda(20^{\circ}\text{C}) = 7.5 \pm 0.5 \text{ GHz}$
- \blacktriangleright Arrhenius plot used to extract energy of defect responsible for λ

$$\Delta E_1 = \dot{E_c} - E_1 = 0.07 \pm 0.01 \text{ eV}$$

 $\Delta E_2 = \dot{E_c} - E_2 = 0.05 \pm 0.01 \text{ eV}$

Summary

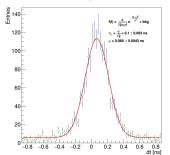

- ► The SPTR of SiPMs is an important characterization parameter
- We present a simple method of measuring the SPTR using bi-luminescence
- $ightharpoonup \Delta t$ distribution modeled with a Gaussian convoluted with an exponential
 - \rightarrow accounts for afterpulsing
- ightharpoonup SPTR \sim 100 ps, similar to literature values
- lacktriangle Afterpulse rate \sim 7-8 GHz

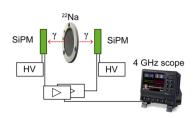
$$ightarrow \Delta E = 0.05 - 0.07 \; eV$$

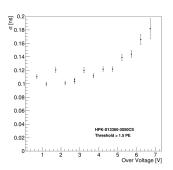
BACKUP

SiPM characterization

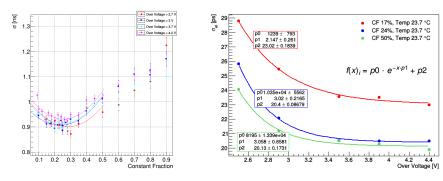
- SiPMs from two manufacturers:
 - Hamamatsu Photonics SensL
- ► SiPM characterized by:
 - Current-Voltage behavior Dark count rate Cross-talk probability Single photon time resolution

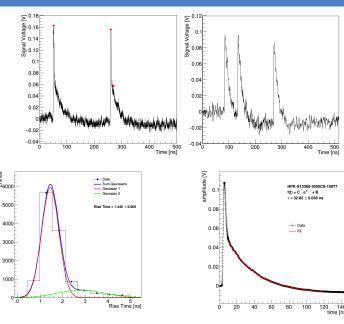




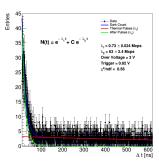

SiPM single photon time resolution

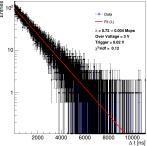
- ▶ Back-to-back γ s from pair-annihilation in 22 Na is used as a source
- Single photon time resolution is taken as the Gaussian width in the time difference spectrum from coincidence signals
- Very good resolution ~ 100 ps is observed in 3 × 3 mm HPK SiPM

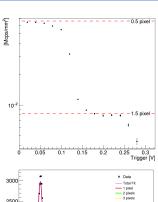

2.7 V - 1.5 photon level

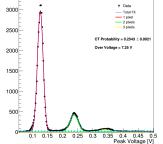


CFD optimization and electronic noise




- ▶ Scan of CFD threshold indicated an optimal value of 24%
- lacktriangle Electronic noise at this value is $\sigma_{el}=22$ ps for the optimal OV = 3 V


Waveforms, rise time and decay time



DCR and cross talk

