

TIFPA

AIDA

Measurements and Simulations of Surface Radiation Damage Effects on IFX and HPK Test Structures

F. Moscatelli^{a,b}, A. Morozzi^{b,c}, D. Passeri^{b,c}, S. Mattiazzo^d, G.-F. Dalla Betta^{e,f}, V. Hinger^g and G. M. Bilei^b

- ^a CNR-IOM of Perugia, via Pascoli 1, 06123, Perugia, Italy
- ^b INFN of Perugia, via Pascoli 1, 06123, Perugia, Italy

om

^c Department of Engineering – University of Perugia, via G. Duranti 93, 06125, Perugia, Italy

^d Dipartimento di Fisica e Astronomia e INFN di Padova, via Marzolo 8, 35131 Padova, Italy

^e DII University of Trento, via Sommarive 9, 38123, Trento, Italy

^{*f*} TIFPA INFN, via Sommarive 14, 38123 Trento, Italy

^g HEPHY, Austrian Academy of Sciences, 1050 Wien, Austria

15TH VIENNA CONFERENCE ON INSTRUMENTATION

Outline

- Motivations
- Experimental measurements (X-rays irradiations)
 - Different test-structures (MOS capacitors, Gated Diodes, Interstrip resistance test structures)
 - Different providers (HPK, IFX) and processes
- TCAD Simulation Results
- Model validation: comparison between simulation findings and experimental data
- Conclusions and future developments

Motivations and goals

- Study the effects of surface damage on silicon devices at high doses (HL-LHC operation greater than 50 Mrad for Outer Tracker and 1 Grad for Inner Tracker).
- Surface damage can strongly influence the breakdown, the inter-electrode isolation, the dark current and the charge collection efficiency of the sensor.
- Extension of the predictive capability of the past "University of Perugia" numerical TCAD model to these very high doses:
 - Physically-grounded parametrization,
 - Keep low the number of traps (e.g. avoiding fitting),
 - No over-specific modelling (e. g. device and technology independent)
 - Deep understanding of physical device behavior.
- Extraction from simple test structures of relevant parameters to be included within the model
- Validation of the new modeling scheme through comparison with measurements of different test structures manufactured by different vendors with different processes before and after irradiation.

Test structures IFX and HPK

- ✓ Measurement Campaign: X-ray irradiation
 - carried out in Padova (IT). Dose rate 0.8 Mrad/hour
 - doses range: 0.05 ÷ 100 Mrad(SiO₂)
 - Measurements after irradiation / annealing 80°C 10 min.

IFX devices

1st campaign 0.05-20 Mrad IFX 8-inch 2S run MOS GCD Rint

2nd campaign IFX 8-inch 2S run MOS

2nd campaign IFX 6-inch PS-S run MOS

FET

MOS Capacitors: measurements

- *p*-type substrate.
- HF measurements at 100 kHz with a small signal amplitude of 25 mV.
- The QS characteristics were measured with delay times of 0.5 s using a voltage step of 100 mV.
- Effective oxide charge density N_{EFF} obtained from V_{FB} measurements.
- Unbiased devices during the irradiation steps. Dry N flux during measurements. IFX PS-S
 IFX 2S

IFX 2S MOS CV Measurements after X-ray

- $V_{FB} \cong$ -10 V at 50 krad
- V_{FB} ≅ -17 V at 100 krad (not shown in this figure)
- $V_{FB} \cong -30$ V at 500 krad
- V_{FB}≅-42 V at 1 Mrad
- V_{FB}≅-50 V at 10-20 Mrad

IFX 2S MOS CV after X-ray 2nd campaign

/CI

IFX PS-S CV after X-rays

- $V_{FB} \cong$ -4 V at 50 krad
- $V_{FB} \cong -5$ V at 100 krad
- $V_{FB} \cong$ -11 V at 500 krad
- V_{FB}≅-15 V at 1 Mrad
- V_{FB}≅-40 V at 10 Mrad
- V_{FB}≃-55 V at 100 Mrad

HPK CV after X-rays

Process p-stop (no implant under the oxide) **P-spray**

IFX - MOSFETs

V_{th} = -0.1 (unirradiated)

'C

- Unbiased devices during the irradiation steps
- Radiation \rightarrow interface traps (N_{IT}) + trapped-oxide (N_{OX}) \rightarrow V_{th} shift (Δ V_{th}).
- ΔV_{th} is separated into a contribution due to N_{IT} and due to N_{OX}, from I_{DS}-V_{GS} of MOSFET (method proposed in McWorther Applied Physics Letters 48, 133 (1986))

$$\Delta V_{th} = \Delta V_{N_{it}} + \Delta V_{N_{ox}}$$

IFX p-type Summary of measurements

For N_{EFF} :

Differences among the three processes at low doses.

At high doses similar results.

PS-S has higher interface traps

HPK p-type Summary of measurements

As expected very similar values for HPK devices

IFX and HPK p-type GCD after X-ray irradiation

- Surface velocity s₀ evaluated as a function of the dose
- Area 11.71 mm²

Area 6.14 mm²

Interstrip resistance after X-ray irradiation

P-stop 1st campaign

P-stop 2nd campaign

Interstrip resistance values are similar between the two campaigns

New "University of Perugia" model

Surface Damage Model: Gaussian

Туре	Peak Energy (eV)	Density (cm ⁻²)	σ (eV)
Acceptor	E _c - 0.40	40% of acceptor N_{IT} [1] ($N_{IT}=M\cdot N_{OX}$)	0.07
Acceptor	E _c - 0.60	60% of acceptor N _{IT} [1] (N _{IT} =M·N _{OX})	0.07
Donor	E _V + 0.70	100% of donor N _{IT} (N _{IT} =M·N _{OX})	0.07

F. Moscatelli et al., *Effects of Interface Donor Trap States on Isolation Properties of Detectors Operating at High-Luminosity LHC*, IEEE Transactions on Nuclear Science, 2017, Vol. 64, Issue: 8, 2259 - 2267

Surface Damage Model: Uniform Bands

IFX 2S MOS capacitors: simulations

- Irradiated structures IFX 2S 1st campaign.
- C-V measurements compared to simulations at different doses.
 - Good agreement for IFX devices!

IFX 2S 2nd campaign MOS capacitors

VCI

IFX PS-S MOS capacitors

₩ VIENNA CONFERENCE O

HPK p-type MOS capacitors: simulations

- Irradiated structures HPK p-type without p-spray.
 - C-V measurements compared to simulations at different doses.
 - → Using the same model with measured N_{OX} and N_{IT} good agreement between simulation and experimental data

HPK MOS capacitors with p-spray: simulations

Gated diodes

Interstrip resistance HPK

Good agreement using the same model used to simulate MOS capacitors

Conclusions

- ✓ Extensive measurements campaign on 5 different IFX and HPK n-on-p test structures before and after irradiation with X-rays.
- ✓ Surface radiation damage effects have been deeply investigated aiming at the extraction of the most relevant parameters:
 - ✓ cross-check of N_{OX}, N_{IT}, D_{IT} evaluated by different methodologies from different test structures, for different vendors (HPK and IFX) and different processes.
- Development of the radiation damage modelling scheme, suitable for commercial TCAD tools (e.g. Synopsys Sentaurus), with a good agreement between measurements and simulations
- ✓ Application to the analysis and optimization of different classes of silicon detectors to be used in the future HEP experiments.

Future developments

- ✓ Bias the IFX and HPK devices during X-rays irradiation
- ✓ Irradiate new HPK batches FZ290 and thFZ240
- ✓ Irradiate test structures first with X-rays and then with neutrons to combine surface and bulk damage

Backup slides

FBK - MOSFETs

- V_{th} = -0.8 ÷ 0.1 V (unirradiated)
- Unbiased devices during the irradiation steps
- Radiation \rightarrow interface traps (N_{IT}) + trapped-oxide (N_{OX}) \rightarrow V_{th} shift (Δ V_{th}).
- ΔV_{th} is separated into a contribution due to N_{IT} and due to N_{OX}, from I_{DS}-V_{GS} of MOSFET (method proposed in McWorther Applied Physics Letters 48, 133 (1986))

F. Moscatelli et al., VCI 2019

FBK Summary of measurements – p-type

ʹϹΙ

FBK Summary of measurements – n-type

F. Moscatelli et al., VCI 2019

VCI

Two different irradiation conditions: without/with biasing the devices.

