The ATLAS High Granularity Timing Detector

Bengt Lund-Jensen
on behalf of
the ATLAS Liquid Argon Calorimeter Group

Vienna Conference on Instrumentation
21 February 2019
HGT D Motivation

- LHC will be upgraded in 2024-2026 to High Luminosity LHC (HL-LHC)
 - Instantaneous luminosities up to \(L \approx 7.5 \times 10^{34} \text{cm}^{-2}\text{s}^{-1} \) about 5 times the current
 - Pile up \(\langle \mu \rangle \approx 200 \) simultaneous interactions per bunch crossing
 - On average 1.5 vertex/mm along beam line at collision point

- In the forward region the tracker (new ATLAS tracker ITK) has less longitudinal resolution → degraded vertex resolution
A new layer of silicon detectors with precise timing, High Granularity Timing Detector (HGTD), in front of the liquid argon end-cap calorimeters improves performance by combining:

- HGTD precise timing
- ITK position information
HGT TD Requirements

- Two endcap disks at $z = \pm 3.5\ m$
- 6.3m^2 active area: $120\text{mm} < R < 640\text{mm} \Rightarrow 2.4 < |\eta| < 4.0$
- Time resolution better than 30 ps per track (50 ps per hit in a 2 layer geometry)
- Sensors on both sides of two cooling plates with varying overlap \Rightarrow
 - $\langle n_{\text{hits}} \rangle = 3$ for $R < 320\text{mm}$ (80% overlap)
 - $\langle n_{\text{hits}} \rangle = 2$ for $R > 320\text{mm}$ (20% overlap)
- Requirement of occupancy $< 10% \Rightarrow 1.3\ \text{mm} \times 1.3\ \text{mm}$ pixels
- 15x30 pixel sensors
- Sensors bump bonded to readout ASIC (ALTIROC) (15x15 chip)
- Wire bonded to flex cable
- Intotal 3.59 M channels

Constrained by available space and harsh environment
Radiation levels

• Total fluence (n_{eq}) and dose to be sustained (new updated numbers compared to fig):
 - $R < 32 \text{ cm} \rightarrow 5.1 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ and 4.7 MGy
 - $R > 32 \text{ cm} \rightarrow 3.9 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ and 1.9 MGy

• A safety factor 1.5 for n_{eq} (sensor) and 2.25 for dose (ASIC) and replacement of inner wheel $< 32 \text{ cm}$ (~32% of sensors and ASICs) at mid run of HL-LHC are taken into account

• Sensors will be operated at -30 °C using shared CO$_2$ cooling system with ITK
Low Gain Avalanche Detectors (LGADs)

- n-on-p planar silicon layer with additional p-layer for moderate gain (10-50) (increases signal, limits noise)
- Time resolution < 30 ps before irradiation
- Thin (base line 50 μm) => small \(t_{\text{rise}} \)

R&D program to provide sensors with required time resolution, radiation hardness and fine segmentation

- New doping materials, substrates and geometries
- Prototypes tested from CNM, HPK, BNL, FBK
- >1000 single pad sensors tested
- Several 5x5 and 15x15 sensors tested. Very uniform leakage current and breakdown voltage
Contributions to timing resolution

\[\sigma_{\text{timing}}^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{jitter}}^2 + \sigma_{\text{time walk}}^2 + \sigma_{\text{TDC}}^2 + \sigma_{\text{clock}}^2 \]

- Landau term: < 25 ps, reduced for thin sensors (35-50 \(\mu \)m)
- Jitter term
 \[\sigma_{\text{jitter}} \approx \frac{t_{\text{rise}}}{S/N} \]
 < 25 ps
- Time walk, minimised by correcting for time over threshold (or for beam tests using constant fraction discriminator (CFD))
- Digitisation granularity ~ 5ps
- Clock distribution < 10 ps
Sensors have been irradiated at IJS (Lubiana) and protons at PS-IRRAD (CERN):

- From 1×10^{14} to $1 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2$ ($5.1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$ need for HGTGD)
- Reduction of gain partially compensated by increasing bias voltage (higher breakdown voltage)

Hit efficiency and timing resolution has been studied with pion beams at CERN SPS North Area

~ 50 sensors tested so far

- Un-irradiated sensors CNM, HPK, BNL
- Irradiated sensors (neutron & proton) CNM and HPK
- 2×2 array sensors
- 2×2 array sensors with ALTIROC0_v2
- Arrays with different inter-pad gaps

Beam tests have also been performed at Fermilab and SLAC and in future also DESY
Results from test beam measurements

Hit efficiency

Before irradiation

After $6 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$

Efficiency still $\sim 100\%$ in center

Broken channel in read-out board
Results from test beam measurements

Timing resolution

A SiPM is used as time reference. Its 40 ps contribution is subtracted.

Before irradiation

Timing resolution slightly worse after radiation

After 6×10^{14} n$_{eq}$/cm2

[Graphs showing timing resolution before and after irradiation]
Results from test beam measurements

Signal efficiency in the interpad region
as function of X (mm) for 3 different voltage thresholds

Before irradiation

After 6×10^{14} n_{eq}/cm^2

HGTD Test beam Sep. 2017

Unirradiated, 120 V, 20°C

HGTD Test beam Sep. 2017

6×10^{14} n_{eq}/cm^2, 250 V, -21°C
ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

- Broad band voltage pre-amplifier
 - Input transistor size chosen to minimize noise and power consumption
 - Provide TOA (9 bits, 20 ps bins) and ToT (7 bits, 40 ps bins)
 - Rise time ~0.5-1 ns (as sensor) to minimise jitter
 - Designed for 5 \(\mu \)A sensor leakage current

Bunch by bunch luminosity measurement capability
- Sums hits in two time windows to evaluate luminosity and background per ASIC
- Only ASICS at R> 320 mm will use luminosity readout
Developed in phases:

- **ALTIROC0**: single pixel analog readout (pre-amp + discrim)
 - Test bench measurements satisfactory
 - Beam tests → see next slide
- **ALTIROC1**: full single pixel (analog + TDC) readout in 5×5 array
 - Test bench measurements on-going
 (preliminary results show similar behaviour as ALTIROC0)
 - Irradiation and beam tests in Q1 2019
- **ALTIROC2**: final 15×15 version.
 - Submission expected end 2019
ALTIROC0_v2 Test beam results

- ALTIROC0_v2 bump bonded to an un-irradiated CNM 2×2 LGAD array
 - TOA of signal corrected for time walk (using probe amplitude)

 - Best achieved time resolution after correction: 35 ps

Graphs showing the TOA vs. probe amplitude and the distribution of values before and after time walk correction.
• The HGTD will mitigate pile-up effects and improve performance in the ATLAS forward region

• Technical proposal was approved 2018

• After a fluence of $6 \times 10^{14} \text{n}_{eq}/\text{cm}^2$
 • Efficiency in bulk is still ~ 100
 • Time resolution of 40-50 ps is achieved
 Link to HGTD beam test paper

• Intense R&D program during 2019-2020

• New sensors are under tests, including 5x5 and 15x5 arrays

• Technical Design Report (TDR) under preparation (5 April)
Backup: Pile-up rejection

- Pileup-jet rejection as a function of hard-scatter jet efficiency in forward region
- No HGT D (black) and HGT D with different $\sigma(t)$

With initial and final timing resolution ($\sigma(t) = 30$ ps), rejection improved by factor of 1.6-4
Fixed pileup-jet eff of 2%, HS eff vs η
Time resolution worsens with radiation (higher dose at lower radius)
Compensated by more hits/track at lower radius. (≥ 3 hits at R<320 mm, ≥2 hits at > R)
Examples:

- **forward pile-up suppression**
- **forward b-tagging**
- **forward lepton isolation**
- **Timing measurements**

VBF final states

\[
VBF \ H \to \ tau \ tau
\]

- **Searches and measurements with forward b-quarks**
 \[t(H \to bb)\]

- **Searches and measurements with forward leptons**
 \[\sin^2 \theta_W\]

- **Long-lived slow particles**
Light-jet rejection versus b-jet efficiency within the HGTD acceptance →

At 70% WP, light-jet rejection improved by a factor of ~ 1.6

Particularly useful for physics with reducible bg from mis-tagged light jets!
Backup: Physics use-cases

- Light-jet rejection versus b-jet efficiency within the HGTD acceptance →
- At 70% WP, light-jet rejection improved by a factor of ~ 1.6
- At high η rej. improved by factor ~ 3

Particularly useful for physics with reducible bg from mis-tagged light jets!
Backup: Physics use-cases

- Efficiency for **electron isolation** selection as a function of pileup vertex density
- No HGT (black) and HGT with different $\sigma(t)$ scenarios
- HGT removes the majority of the effects of pileup, recovers 15% for average HL-LHC vertex density
- $\sigma(t) < 30$ ps does not help much
Physics: Impact on tH (final state with ≥ 2 b-tagged jets)

- Probes sign of top-Yukawa coupling directly (left, if negative $\Rightarrow \sigma(tH) \times 10$), complementary to ttH

- Sensitivity to tH increased by 11% using HGTD

- Primarily due to improved b-tagging

$|\eta|$ for most forward light-jet shown in the $3b$ region for tH followed by $H \rightarrow bb$ and the backgrounds from tt and ttH production