RD53A: a large-scale prototype chip for the phase II upgrade in the serially powered HL-LHC pixel detectors

The 15th Vienna Conference on Instrumentation

February 20, 2019

Aleksandra Dimitrievska
on behalf of the RD53 Collaboration

Lawrence Berkeley National Laboratory
The RD53 Collaboration represents a joint effort between ATLAS and CMS communities in order to build large scale pixel readout chips for the Phase II upgrade of ATLAS and CMS:

- 24 Institutions from Europe and US

HL-LHC Challenges
- 200 interactions per bc
- Detector lifetime: 4000 fb\(^{-1}\)
- Increased trigger rate and latency
- High granularity, Less material

RD53A – first prototype
- 65 nm technology (high density logic and low power)
- 20mm x 11.5mm (half size of the production chip)
- 400 x 192 pixels (50x50 μm pixel)
- Submission Aug 31 2017, First chip tested Dec 6 2017, First bump-bonded chip test Apr 13 2018
- RD53A Manual: https://cds.cern.ch/record/2287593/

RD53 Requirements
- High hit rates: 3 GHz/cm\(^2\)
- 500 Mrad tolerance
- High trigger rate: 1MHz
- Low threshold: 600 e
- 50 x 50 μm\(^2\), Low power
RD53A: Powering

- Baseline for powering the ATLAS and CMS HL-LHC pixel detectors: **serial powering**
 - Low mass, Not sensitive to voltage drop, Low noise
 - Up to 4 chips in parallel resolve single chip failures

- **RD53A Shunt-LDO regulator**
 - Low-drop linear voltage and a shunt regulator
 - Three operational modes (direct, LDO and ShuntLDO)
 - Analog and Digital voltage rails
RD53A: Powering

- Line regulation of the ShuLDO
 - Shunt-LDO makes power load look like resistor with voltage offset.
 - Power consumption variations inside chip not “visible” from outside.
 - Configurable offset voltage and effective resistance.
RD53A Pixel Floorplan

- Pixel matrix build from 8 x 8 pixel cores
- One Pixel Core contains multiple Pixel Regions with shared logic and trigger latency buffering
- FEs are placed as analog islands in the "digital sea" of synthesized core logic
- All cores are identical
RD53A Calibration Circuit

- High and medium injection voltage are generated by 12-bit voltage DAC
- The **linearity** of the calibration injection voltages is confirmed!
- Measured value: 0.196 mV/DAC for measured injection capacitance of 8.21 fF (10 e/DAC)
- Simulated value: 12 e/DAC
Analog Front-End (FE) Description

- Three different analog FE designs for performance comparisons with same layout area
- Common calibration injection circuit

<table>
<thead>
<tr>
<th>Synchronous FE</th>
<th>Linear FE</th>
<th>Differential FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopic cascode design</td>
<td>Folded cascode amplifier</td>
<td>Straight cascode design</td>
</tr>
<tr>
<td>Auto-zeroing mechanism: threshold trimming is not needed</td>
<td>Classical FE architecture: linear pulse amplification and low power current comparator</td>
<td>Differential threshold circuit optimized for low threshold and low noise operation</td>
</tr>
</tbody>
</table>

| | 128 columns (16 core columns) | 136 columns (17 core columns) | 136 columns (17 core columns) |
|---|---|---|
| 0 - 127 | 128 - 263 | 264 - 399 |
• Two test systems:
 • BDAQ53 (Bonn University) https://gitlab.cern.ch/silab/bdaq53
 • YARR (LBNL) https://github.com/Yarr/Yarr

• RD53A Characterization
 • Automated wafer probing
 • Radiation campaigns
 • Bump bonding with sensors
 • Studies with radioactive sources and with test beams
 • Serial powering tests
 • All tested chips were loaded on the RD53A single chip card
 • More than 250 chips tested and distributed between institutes
 • About 30 chips irradiated
 • About 150 chips bump bonded to different types of sensors (planar, 3D, 50x50 μm² and 25x100 μm²)
 • All test results shown are in LDO mode, performance in Shunt mode has found to be the same
RD53A Results: Analog FE Characterization

- Verify the functionalities of the three FEs
- Tests with bare chips and 50x50 μm2 sensors with different settings
- Overdrive: difference between threshold and in-time threshold

![Graphs showing ENC (electrons) and Overdrive (electrons) for RD53A and Cold bare chip, 0 dose compared to Cold 50x50 module, 0 dose.](image)
• Measure how many pixels have noise occupancy > 10^{-6} hits/bc as a function of the mean threshold

• Procedure:
 ✓ tune
 ✓ lower global threshold
 ✓ retune pixel threshold (except for the SFE)
 ✓ measure (in-time) threshold
 ✓ measure noise

• Dependent on the tuning procedure (assumed that the threshold distributions is Gaussian)

• Cold Bare Chip
RD53A Results: Double Trigger Scan

- **Double injection** (two charges injected into the same pixel with a variable delay)

1. Used as *event*: constant charge injection.
2. Used as *probe*: threshold scan to measure the impact of the event.
RD53A Results: Realistic Hit Rate

• Kr-85 beta source with activity 60 mCi (opening window 19 mm)
• Estimated hit rate: 7×10^{-4} hits/bc
RD53A Results: Analog FE Characterization After Irradiation

- Multiple irradiation campaigns:
 - X-ray high and low dose rate irradiation
 - Non-uniform x-ray irradiation
 - Low dose rate irradiation (ongoing)
- Eight ring oscillators in the bottom right corner of the chip build with different logic cells
- Each oscillator drives a 12-bit counter, enabled for a known amount of time set by configuration
- Only 25% degradation after 1 Grad

The Most Sensitive Gate: Inverter Strength 0
RD53A Results: Analog FE Characterization After Irradiation

- Noise for different current settings (for 0, 200, 300, 500 Mrad)

- Threshold distribution after 1 Grad irradiation of a bare chip
RD53B Development

- In parallel with the RD53A characterization, the development of the final production chips is already ongoing.
- All elements of RD53A with bug fixes and improvements.
- During summer 2018 some small prototypes have been submitted for some blocks requiring major changes.
- ATLAS (CMS) chip submission July 2019 (December 2019).
- Same RD53 team will tape out both chips.
- Both chips are synthesized from a common design framework called RD53B main difference is the size:

![Diagram showing RD53A, ATLAS, and CMS sizes]
Conclusions and Future plans

• RD53A, a large scale demonstrator chip in 65nm, has been fabricated in fall 2017 and tested in 2018.

• RD53A tests and results show that RD53A is a solid baseline for final chip development:
 ✓ Noise and threshold dispersion values close to simulation results.
 ✓ Results still improving with optimization of test setups.
 ✓ First radiation tests show minimal degradation in analog performance up to 500 Mrad at cold temperature (in agreement with simulation using post rad transistor models).

• All analog FE are fulfilling specifications but all need additional modifications for final chip.

• Ongoing modules characterization:
 ✓ Chip successfully operated with sensor.
 ✓ Extensive qualification including test-beams.

• Continue with irradiation campaigns.

• Testing of the serial power chain.

• Design and hybrid testing started.
Related presentations:

• **T. Flick**: Module and System test Development for the Phase-2 ATLAS ITk Pixel Upgrade
 https://indico.cern.ch/event/716539/contributions/3246646/

• **G. Sguazzoni**: The CMS Pixel Detector for the High Luminosity LHC
 https://indico.cern.ch/event/716539/contributions/3246035/

• **J. Duarte-Campderros**: First results on 3D pixel sensors interconnected to RD53A readout chip after high energy proton irradiation
 https://indico.cern.ch/event/716539/contributions/3246092/
HL-LHC Timeline

LHC / HL-LHC Plan

- **LS1**: spillo consolidation button collimators R2E project
 - 2011-2012: 7 TeV
 - 2013-2014: 8 TeV
 - 2015: 13 TeV
 - 2016-2017: 14 TeV
 - 2018: 150 fb⁻¹ nominal luminosity
 - 2019: 30 fb⁻¹

- **LS2**: injector upgrade cryogenics Point 4 dispersion suppression collimation
 - 2020-2022: 2 x nominal luminosity
 - 2023: 300 fb⁻¹

- **LS3**: HL-LHC installation
 - 2024-2025: 5 to 7 x nominal luminosity
 - 2026: 3000 fb⁻¹ luminosity

- **EYETS**: SPS CC

- **2035**:
RD53A Floorplan

- Layout and functional view of RD53A floorplan
RD53A: Synchronous FE

- Telescopic-cascoded CSA with Krummenacher feedback for linear return to baseline and compensation of DC sensor leakage
- Synchronous hit discriminator with track-and-latch comparator
- Threshold trimming using the auto-zeroing technique (no local trim DAC)
- ToT counting using 40 MHz clock or fast counting using latch as local oscillator (100-900 MHz)
- Efficient self-calibration can be performed according to online machine operations
RD53A: Linear FE

• Single amplification stage with Krummenacher feedback for linear return to baseline and compensation of DC sensor leakage

• High-speed, low-power current comparator 4-bit local DAC for threshold tuning

• 4-bit local DAC for threshold tuning
RD53A: Differential FE

- Continuous reset integrator first stage with DC-coupled pre-comparator stage.
- Switchable low pass filter in feedback for leakage current compensation.
- 5-bit threshold trimming DAC
- Bug in the analog and digital interface: missing P&R constraint on the Differential FE hit output: varying load capacitance on comparator output resulting in systematic variation of delay and ToT (only 12 pixels par core selected as good)
- The bug does not prevent the full characterization of the Differential FE
RD53A Features

• **Start-up issues**: PLL not locking
 - VDD (from which PLL is powered) has to be >1.12V for PLL to work
 - VDDA and VDDD decrease with lowering temperature O (1mV/1C)

• **Synchronous FE**: auto-zeroing produces noise on power lines.

• **Linear FE**: untuned threshold dispersion is very large

• **Differential FE**: pixel-pixel variation of the parasitic capacitance at the comparator outputs, good pixel matrix has to be applied for time-sensitive measurements

• Source scans requires all four HitOrlanes.
RD53A Testing: YARR
RD53A Characterization: Register Readback Tests

- Readout registers same command for both global and local registers, and register frames are received containing requested registers.
- Differential and linear front end have 8-bit, while synchronous has 3-bit registers RD53A has read-only registers for some tests and monitors.
- Ring Oscillators shown here:
 - Scan the duration of global pulse
 - Oscillator frequency depends on temperature and voltage

![Graphs showing frequency vs. temperature and supply voltage for RD53A and Chip SN: 0x0C96.](image)
RD53A Characterization: Ring Oscillators

- Low and high dose rate comparison
- Difference between gates of different strengths
RD53A Characterization: Reference Current

- Nominal internal reference current is 4 μA
- Has to be trimmed in order to compensate for process variations
-Trimming can be done with 4-bit code set by wirebonds
- *The nominal current value correspond to setting 6 - 11*

- After irradiation:
RD53A Characterization: Injection Capacitance

- Two banks of 100 parallel injection capacitors for the purpose of measuring the capacitance (left and right side)
- The capacitance is measured from the frequency and measured current when the banks are cyclically charged and discharged
- 0x072A:
 - injection capacitance is measured from multiple charge-discharge cycle frequencies
 - left side bank shown, parasitic capacitance is subtracted
 - parasitic capacitance measurement circuit is broken for right side
- Average: 8.21 fF
- Difference between banks: 0.04 fF, left side has slightly larger capacitance
- Nominal value 8.5 fF
RD53A Characterization: Time-walk

- Measure analog FE trigger output delay as function of the injected charge
- Set the injection voltage, trigger on the injection signal and measure the delay until the HitOr rising edge
- Repeat the measurement for different injection voltages
- Delay should decrease with the number of injected electrons
RD53A Results: Analog FE Characterization

- Verify the functionalities of the three FEs
- Tests with bare chips and 50x50 μm² sensors with different settings
- Overdrive: difference between threshold and in-time threshold
RD53 Characterization: Analog FEs