18–22 Feb 2019
Vienna University of Technology
Europe/Vienna timezone

Calibration of a polycrystalline 3D diamond detector fabricated for small field dosimetry

Not scheduled
15m
Vienna University of Technology

Vienna University of Technology

Gusshausstraße 27-29, 1040 Wien
Board: 73
Poster Semiconductor Detectors Poster Session B

Speaker

Keida Kanxheri (INFN - National Institute for Nuclear Physics)

Description

In medical radiation dosimetry, the use of small photon fields is almost a prerequisite for high precision localized dose delivery to delineated target volume. The accurate measurement of standard dosimetric quantities in such situations depends on the size of the detector with respect to the field dimensions. Thanks to a new technology, polycrystalline diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. By fabricating very narrow and close by columnar electrodes perpendicular to the detector surface, it is possible to create arrays of 3D-cells with very small sensitive volume. In order to present a solution to the problem of the detector size for small field dosimetry the 3D technology aims to a new highly segmented larger polycrystalline diamond dosimeter to obtain field profiles in a single shot measurement, reducing the uncertainty of the delivered dose. To this purpose a 3D all carbon detector with an array of 9 3D cells have been produced. Due to the heterogeneous structure of the polycrystalline diamond substrate, it was necessary to study the response of each 3D cell under a standard field photon beam. It was demonstrated that each single cell of the array has a different sensitivity to the radiation beam,but the response is linear, stable and repeatable hence different calibration factors can be applied to obtain an overall detector response and reduce the uncertainty of the delivered dose.

Primary author

Keida Kanxheri (INFN - National Institute for Nuclear Physics)

Co-authors

Dr Anna Concetta Dipilato (Dipartimento di Scienze Chirurgiche e Biomediche, Università degli Studi di Perugia) Arianna Morozzi (INFN, Perugia (IT)) Chiara Corsi (LENS Firenze) Cinzia Talamonti (INFN Firenze and University of Florence Italy) Dr Claudio Zucchetti (Dipartimento di Fisica Medica, Ospedale Santa Maria della Misericordia, Perugia, Italia) Daniele Passeri (Universita e INFN Perugia (IT)) Leonello Servoli (Universita e INFN, Perugia (IT)) Luisa Alunni Solestizi (Universita e INFN, Perugia (IT)) Dr Marco Bellini (INO-CNR Firenze) Maria Ionica (INFN Perugia) Dr Martina Iacco (Dipartimento di fisica medica, ospedale santa maria della misericordia perugia) Maurizio Biasini (Universita e INFN, Perugia (IT)) Dr Mirco Caprai (INFN Perugia) Silvio Sciortino (Universita e INFN, Firenze (IT)) Dr Stefano Lagomarsino (Università e INFN Firenze)

Presentation materials