The PreProcessor modules for the ATLAS Tile Calorimeter at the HL-LHC

Fernando Carrió Argos
IFIC (University of Valencia – CSIC)

On behalf of the TileCal Upgrade group
Outline

- Tile Calorimeter and Phase II Upgrade
- Development of new readout electronics
- Status of the full-size PreProcessor modules
- Summary
ATLAS Tile Calorimeter

- Segmented calorimeter of steel plates and plastic scintillator tiles which covers the most central region of the ATLAS experiment.
- Measures energies of hadrons, jets, τ-leptons and E_T^{miss}.
- 4 partitions: EBA, LBA, LBC, EBC.
- Each partition has 64 modules.
 - One drawer hosts up to 48 PMTs.
- Light produced by a charged particle passing through a plastic scintillating tile is transmitted to the PMTs.
- Scintillator tiles are read out using wavelength shifting fibers coupled to PhotoMultiplier Tubes (PMTs).
- Around 10,000 readout channels.

F.Carrió - Vienna Conference on Instrumentation 2019
TileCal Phase II Upgrade

- Large Hadron Collider plans to increase the instantaneous luminosity by a factor 5-7 around 2027 → High Luminosity-LHC
- Complete replacement of on-detector and off-detector readout electronics
 - Aging of electronics due to time and radiation
 - Current readout system is not compatible with Phase II TDAQ architecture
- New readout strategy for HL-LHC
 - On-detector electronics will transmit digitized data to the off-electronics at the LHC frequency (40 MHz) → 40 Tbps to read out the entire detector!
 - Buffer pipelines are moved to off-detector electronics
 - Redundancy in data links and power distribution → improve system reliability

F.Carrió - Vienna Conference on Instrumentation 2019
The Phase II module is composed of 4 mini-drawers (48 PMTs). Each mini-drawer have 2 independent read out sections for redundant cell readout:

- 12 PMTs + 12 front-end boards reading out 6 TileCal cells
- 1 × MainBoard: operation of the front-end boards
- 1 × DaughterBoard: data high speed link with the off-detector electronics
- 1 × High Voltage regulation board: Remote or Internal options
- 1 × Low Voltage Power Supply (LVPS): low voltage power distribution
Tile PreProcessor

- **Core element of the off-detector electronics**
 - Data processing and handling from detector
 - Clock distribution towards the modules
 - Detector Control System data distribution
 - Interfaces with the ATLAS trigger and ATLAS readout systems (FELIX)

- **Fully functional prototype - Demonstrator**
 - Xilinx Virtex 7 (48 GTX), Kintex 7 (28 GTX)
 - 4 QSFPs, TX+RX Avago MiniPODs
 - Double mid-size AMC (µTCA / ATCA carrier)
 - 1/8th of the full-size PreProcessor

- **Operates 4 mini-drawers → 160 Gbps!**

- **Bit Error Rate Tests**
 - 16 links at 9.6 Gbps with PRBS31 pattern during 115 hours
 - BER better than $5 \cdot 10^{-17}$ for a CL of 95%

9.6 Gbps
Eye diagram at 9.6 Gbps

PPr Demonstrator
Test Beam setup

- Located at the Super Proton Synchrotron (SPS) North Area on the H8 beam line
- Detector modules equipped with upgraded and legacy electronics for performance comparison
- Fully integrated with the ATLAS TDAQ software and DCS system
 - Front-end electronics configuration
 - Physics, calibration and laser runs
 - HV and LV control/monitoring
- Data taking through FELIX / legacy system
- Phase II clock and readout architecture
- Insertion of a demonstrator module into the ATLAS experiment this Spring
Full-size PreProcessor

- **32 TilePPr boards in ATCA format:** ATCA carrier + 4 Compact Processing Modules
- **32 TileTDAQ-I:** Preprocesses trigger data and interfaces with L0Calo, L0Muon and FELIX system
ATCA Carrier Base Board

- Full-Size ATCA board
 - 14 layers, FR4 dielectric
 - 2.4 mm thickness
 - PCB cutaway to improve cooling
- Zone 1: Power distribution to CPMs and TDAQ-I
 - Max power of 400 W
- Zone 2: GbE + XAUI 10G
 - Communication with rest of the ecosystem
- Zone 3: Communication between CPMs and TDAQ-I
 - GbE lines, 16 Gbps lines
- First prototypes being produced
ATCA Carrier Base Board

- Full-Size ATCA board
 - 14 layers, FR4 dielectric
 - 2.4 mm thickness
 - PCB cutaway to improve cooling
- Zone 1: Power distribution to CPMs and TDAQ-I
 - Max power of 400 W
- Zone 2: GbE + XAUI 10G
 - Communication with rest of the ecosystem
- Zone 3: Communication between CPMs and TDAQ-I
 - GbE lines, 16 Gbps lines
- First prototypes being produced
Mezzanine boards

- **Compact, replaceable and upgradeable solution**

- **TileCoM - Computer on Module**
 - Embedded Linux – PetaLinux distribution
 - Remote programming, DCS monitoring, clock generation for standalone tests
 - Xilinx Zynq UltraScale+ XCZU2CG + 512 MB DDR4
 - 10 layers - DDR3 form factor (67.6 mm x 40.00 mm)

- **Ethernet switch module**
 - Unmanaged Ethernet Switch chip Broadcom BCM5396
 - 16 GbE connection between CPMs and TDAQ-I
 - 6 layers - DDR3 form factor (67.6 mm x 30.00 mm)

- **IPMC mezzanine board (CERN)**
 - Microsemi A2F200, DIMM-DDR3 VLP form factor
 - Hot swap, sensor monitoring, power management

Prelayout of the TileCoM
Compact Processing Module

- Single AMC board with Kintex Utrascale FPGA
 - 32 bidir-channels in 8 Samtec Firefly modules
 - 16 bidir-channels through backplane (PCIe, GbE)
 - Different line rates & clocking schemas supported

- High bandwidth readout system
 - Up to 500 Gbps via optics
 - Up to 260 Gbps via electrical backplane

- First prototypes at the end of March
Compact Processing Module

- **Silicon Labs si5345**
 - Clock generator
 - Jitter cleaning

- **Artix 7 35T**
 - Slow control + monitoring
 - Clock phase measurement

- **Kintex UltraScale KU085**
 - Acquisition
 - Data buffering
 - Processing

- **DDR4 512 MB**

- **8 x Samtec Firefly optical modules**
 - 4 bidir optical links up to 14 Gbps
 - MXC connectors ending

- **Ethernet Communication**

- **Front panel**

- **MMC**

- **AMC connector**

- **RJ45**

- **4 bidir optical links up to 14 Gbps**

- **MXC connectors ending**

- **Analog LTC2977**
 - Power monitoring
 - PMBus interface

- **ISOLA FR408HR**
 - \(\varepsilon_r = 3.65 \)
 - With low dissipation losses

- **14 layers \rightarrow 1.6 \text{ mm thickness}**
Planning

- First prototypes
- Electrical tests
- Optical tests
- Firmware
- Validation
- Full-size PPr
- Integration tests with on-detector
- Documentation
- Firmware opt
- Preproduction
- Test bench design
- Integration tests at CERN
- Validation at test-benches
- Tendering process
- Final production
- Validation and shipping
- Final integration tests
- Installation of ATCA crates
- Tests in ATLAS with on-detector and Trigger electronics

- Preproduction (25%) from Q3 2020 to Q1 2022
 - 8 ATCA carriers, 32 CPMs
- Final production (75%) from Q2 2022 to Q3 2023
 - 24 ATCA carriers, 96 CPMs
Summary

- Complete redesign of the on-detector and off-detector readout electronics for the HL-LHC
- Development of readout electronics prototypes are done and tested
- Fully operational PreProcessor prototype has been designed and qualified
- Extensively tested in several test beam campaigns during 2015 and 2018
 - All prototypes showed a good performance
 - Readout electronics implements the clock and data architecture for HL-LHC
- Insertion of a demonstrator in ATLAS experiment during May 2019
- Full-size PreProcessor modules are under design / production
 - ATCA carrier + 4 Compact Processing Modules
 - First units expected for Q1 2019
Thank you for your attention!
Front-End Boards and MainBoard

- **Front-end boards:** FENICS cards
 - PMT pulse shaping
 - Shaper with bi-gain output: $1 \times \text{LG} + 1 \times \text{HG}$
 - High precision slow integrator
 - Design based on current 3in1 cards
 - Improved noise and linearity
 - Improved calibration circuitry

- **MainBoard**
 - Digitize analog signals coming from 12 FEBs
 - Routes the digitized data from the ADCs to the DaughterBoards
 - Digital control of the FEBs
 - HG and LG, 12-bit samples @40 MspS
 - TID, NIEL, SEE tests performed
DaughterBoard

- High-speed link with the back-end electronics
 - Data collection and transmission
 - Clock and command distribution
 - Data link redundancy
- Daughterboard version 5
 - 2 × GigaBit Transceiver (GBT) chips
 - 2 × Xilinx UltraScale+ FPGAs
 - 4 × SFP modules → ~40 Gbps
- TID tests with ~ 9 MeV electron beam
- SEE and SEL tests done with 58 MeV and 226 MeV proton beam
 - Soft error rate is low → Triple redundancy
 - No destructive effects observed
Clock and dataflow schema

- High-speed links with fixed and deterministic latency
 - 9.6/4.8 Gbps GigaBit Transceiver protocol
- Clock is transmitted embedded with commands
- On-detector sends digitized PMT signals at 40 MHz
- Two independent readout paths:
 - FELIX system / Legacy Read Out Drivers
Detailed design of 10 Gbps lines

- Differential and characteristic impedances
- Supression of impedance discontinuities
 - Differential via design
 - DC-coupling capacitors
- S-parameters extraction for crosstalk studies: FEXT and NEXT
- Post-layout simulations to evaluate the total jitter

Power distribution design

- 10 voltage regulators: low noise design
- Simulation of voltage drops due to high currents (IR drops)