The CMS High Granularity Calorimeter for High Luminosity LHC

Rachel Yohay (Florida State University)
On behalf of the CMS Collaboration
15th Vienna Conference on Instrumentation on Instrumentation
February 19, 2019
Outline

- Motivation
- Detector design
- Silicon sensor prototyping
- Performance
- Conclusions and outlook
The focus of this talk

- Motivation
- Detector design
- Silicon sensor prototyping
- Performance
- Conclusions and outlook
Motivation
The Compact Muon Solenoid (CMS) detector

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm): ~16m² ~66M channels
- Microstrips (80x180 μm): ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
- Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRONDON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels

Endcap calorimeter
- $1.5 < \eta < 3.0$

High luminosity physics and the endcap

Physics goals of the High Luminosity LHC (HL-LHC) make specific performance demands of the endcap calorimeter:

- Measurement of vector boson fusion (VBF) Higgs production and WW scattering, processes identified by two characteristic forward jets
- Searches for rare heavy particles associated with supersymmetry (SUSY) and other Standard Model (SM) extensions
 - Extend electron, photon, tau, and jet reconstruction to the endcaps to better exploit the dataset
 - Improved missing transverse energy (M_{ET}) reconstruction
- CMS upgrade philosophy: equal or better performance under HL-LHC conditions
Complete overhaul required

- PbWO$_4$ crystal transmission loss due to radiation damage
- Worsening energy resolution due to increased pileup
Detector design
High Granularity Calorimeter (CE)

Active Elements:
- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- “Cassettes”: multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:
- CE covers $1.5 < \eta < 3.0$
- ~215 tonnes per endcap
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M si channels, 0.5 or 1 cm² cell size
- ~27000 si modules
- Power at end of HL-LHC: ~110 kW per endcap

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X_0 & ~1.3λ

Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5λ
High Granularity Calorimeter (CE)

Active Elements:
- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassei9es": multiple modules mounted on cooling plates with electronics and absorbers
- Scin6llating cells with SiPM readout in low-radiation regions of CE-H

Key Parameters:
- CE covers $1.5 < \eta < 3.0$
- ~215 tonnages per endcap
- Full system maintained at -30°C
- ~600m2 of silicon sensors
- ~500m2 of scintillators
- 6M Si channels, 0.5 or 1 cm2 cell size
- ~27000 Si modules
- Power at end of HL-LHC: ~110 kW per endcap

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X_0 & ~1.3λ
Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5λ
Design in a nutshell

Particle flow (PF) calorimeter, optimized for PU rejection and jet energy resolution (JER)

- PU rejection required by high HL-LHC instantaneous luminosity
- JER improved with respect to cone-based reconstruction
 - Good position resolution from fine longitudinal and transverse granularity to associate calorimeter segments to charged hadron tracks
 - High resolution tracking information used to estimate the energy of charged jet candidates
 - Low resolution calorimeter information “only” used to estimate the energy of neutrals

Typical jet is composed of:
- 62% charged particles
- 27% photons
- 10% neutral hadrons
- 1% neutrinos
Design in a nutshell

- Per-channel calibration with minimum-ionizing particles (MIPs) throughout HL-LHC lifetime imposes requirements on radiation tolerance
- Dictates choice of active materials
- Dictates geometry
Silicon sensor design

- n-on-p sensors for superior radiation hardness
- Cost optimization
 - Hexagonal sensors from 8” wafers
 - Thickness decreases as expected fluence increases
- Cell sizes (~ capacitance ~ noise) set by MIP signal-to-noise (S/N) requirement at end of life
- Threefold diamond symmetry permits easy grouping of trigger cells and association to readout chips
- Fractional variants to cover inner and outer boundaries

<table>
<thead>
<tr>
<th>Active thickness (μm)</th>
<th>Cell size (cm²)</th>
<th>Cell capacitance (pF)</th>
<th>Expected fluence range (×10¹⁵ neq/cm²)</th>
<th>Initial MIP S/N</th>
<th>Smallest MIP S/N after 3000 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.18</td>
<td>45</td>
<td>0.1-0.5</td>
<td>11</td>
<td>4.7</td>
</tr>
<tr>
<td>200</td>
<td>1.18</td>
<td>65</td>
<td>0.5-2.5</td>
<td>6</td>
<td>2.3</td>
</tr>
<tr>
<td>120</td>
<td>0.52</td>
<td>50</td>
<td>2-7</td>
<td>4.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

192-channel sensor

432-channel sensor

CE-E layer 9
Silicon sensor design

- 300- and 200-μm sensors in physically thinned float zone (FZ) silicon
- 120-μm sensors in epitaxial high-resistivity silicon layer on lower resistivity substrate (“epi”)
- “Mouse bites” for module mounting
- Dedicated small (low-capacitance ~ low-noise) calibration cells
- Common and individual p-stops under consideration

Common p-stop

Individual p-stop

192-channel wafer layout with calibration cells
Silicon sensor prototyping
Prototyping timeline

CMS Phase 2 Tracker R&D: Hamamatsu
- FZ (200- and 320-µm) vs. epi (120-µm)
- n-on-p vs. p-on-n
- Proton (23 MeV and 24 GeV) and reactor neutron irradiation campaigns

8” hexagonal n-on-p sensors: Hamamatsu
- FZ (300- and 200-µm) and epi (120-µm)
- 192 channels (current module design)
- Common vs. individual p-stop
- Stepper and full-wafer lithography

6” hexagonal sensors: Hamamatsu
- FZ (300-µm) and deep-diffused float zone (ddFZ) (200- and 120-µm)
- n-on-p vs. p-on-n
- 128- and 256-channel variants
- Common vs. individual p-stop
- Reactor neutron irradiation campaign

CE R&D: Hamamatsu
- Test structures on Phase 2 tracker wafers
- Reactor neutron irradiation campaign

2011 JINST 6 (2011) P10010
Lessons learned: tracker R&D

• Thin (≤300 μm) sensors required in regions of highest fluence

• Over-depleted operation necessary for maximum charge collection

• Reduced full depletion voltage ⇒ reduced leakage current ⇒ reduced power dissipation

• n-on-p sensors have better noise performance after irradiation than p-on-n

Before irradiation

After irradiation

200 μm p-on-n pedestal-subtracted noise
Lessons learned: CE R&D

• Difference in charge collection between p-on-n and n-on-p sensors small above $10^{15} \text{ n}_{\text{eq}}/\text{cm}^2$

• Above $\sim 6 \times 10^{15} \text{ n}_{\text{eq}}/\text{cm}^2$, 100-μm epi n-on-p sensors (300 V bias) collect more signal charge than 120-μm ddFZ n-on-p sensors (600 V bias)

• Diode noise measurements agree with Hamburg model (linear dependence of current/volume on fluence)
Lessons learned: Hamamatsu 6”

- Excellent sensor performance across 200 prototypes
- Homogeneous leakage current across sensor area
- Per-cell leakage current at 1000 V before irradiation of order 1 nA (spec is ≤100 nA per cell, ≤20 μA per sensor at 800 V and 20°C)
- Breakdown voltage typically >1 kV
- Hamamatsu established as a reliable vendor
- Leakage current measurements in agreement with those supplied by Hamamatsu
- Decision made to develop 8” sensors
- Development of switch + probe card system for fast sensor characterization

Per-cell leakage current at 1 kV bias for one 128-channel sensor

<table>
<thead>
<tr>
<th>Cell leakage current (nA)</th>
<th>Values for U = 1000.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Leakage current measured with switch + probe card setup (23/200 sensors)

- I_{max} @ 1000V
- I_{mean} @ 1000V
- I_{median} @ 1000V
- I_{min} @ 1000V

```
<table>
<thead>
<tr>
<th>sensor number</th>
<th>$I_{\text{max}}$ @ 1000V</th>
<th>$I_{\text{mean}}$ @ 1000V</th>
<th>$I_{\text{median}}$ @ 1000V</th>
<th>$I_{\text{min}}$ @ 1000V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>1.5</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20</td>
<td>3.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
```
Lessons learned: Hamamatsu 6"

- Sensors exposed to $1.5 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
- Performance after neutron irradiation in line with expectations
 - Leakage current scales with cell area
 - Dependence of leakage current per unit volume on fluence agrees with Hamburg model expectation
- Noise measurements needed to confirm non-Gaussian tails in p-on-n sensors
Lessons learned: Hamamatsu 8”

- Stepper sensors considered an 8” proof of principle for investing in full-wafer lithography
- Commissioning of different measurement techniques for quality control
 - Sensor geometry and DC coupling precludes an integrated biasing circuit with a single grounded contact point for IV and CV testing ⇒ multiple cells need to be biased simultaneously to replicate operating conditions
 - “Seven-needle” measurement as reference
 - Probe card with pogo pin contacts for fast characterization
Lessons learned: Hamamatsu 8"

- Excellent sensor quality as for 6” sensors
- Good agreement with Hamamatsu leakage current measurements
- Per-cell capacitances in line with TDR expectation

Per-cell IV curves for prototype 192-channel sensor (300 μm, individual p-stop)

- **Hamamatsu 7-needle**
- **CERN probe card**

Table: Design vs. Measured Capacitance

<table>
<thead>
<tr>
<th>Cell area (cm²)</th>
<th>Sensor thickness (μm)</th>
<th>Design capacitance (pF)</th>
<th>Measured capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>200</td>
<td>65</td>
<td>69-71</td>
</tr>
<tr>
<td>1.18</td>
<td>300</td>
<td>45</td>
<td>49-50</td>
</tr>
</tbody>
</table>

- **OF**
- **Cells with high current or breakdown**
Performance
Test beam: 2016

- 6” modules with different depth configurations
- First demonstrations of:
 - MIP calibration
 - Shower reconstruction
 - Time tagging core of showers
 - Resolution on time difference between neighboring cells of a sensor ~25 ps at an effective S/N of 100
 - Good timing precision can be achieved for high energy deposits found in the core of electromagnetic and hadronic showers
Test beam: 2018

- 6” modules with readout PCB, readout chip, and absorber closer to design spec
- 28-layer CE-E + 12-layer CE-H for 94 silicon modules total (+ 39 scintillator layers behind CE-H)
- Preliminary results with basic reconstruction (currently being improved) indicate:
 - MIP signal visible even for low S/N
 - Excellent description of the energy resolution and linearity with simulation

Agreement for longitudinal and transverse shower profiles (still some tuning of Geant4 model description needed)

- Long. profile wiggles due to back-scattering from CuW
- Good linearity in energy response up until 300 GeV
- Data/MC energy scale difference only 4%
- Data and MC resolution agree with TDR expectation
 - MC momentum spread ~1%

MIP calibration possible with HGC-only tracking – agreement with DWC-selection

- Reliable MIP reconstruction even in Low Gain (S/N ~ 3, cf. S/N ~ 7 in HG)
- All types of cells and sensors calibrated:
 - 7531 channels (63%), 363 chips (97%)

Reconstructed HighGain [ADC]

- Module 78, chip 2, channel 42
 - MPV: 44.8 ADC / MIP

Reconstructed LowGain [ADC]

- Module 78, chip 2, channel 42
 - MPV: 5.31 ADC / MIP

28-layer CE-E setup from June + 12-layer CE-H-Si setup (total: 94 modules)

- 3 configurations (full CE-E vs full CE-H)
- Bias, current and environmental control, active water cooling (same as in June)
- Delay Wire Chambers, threshold Cherenkov counters, MCP-PMTs for timing reference
- CALICE AHCAL as scintillator CE-H
- Trigger: 2x scintillators in front of CE-E + 1x additional (veto) behind CE-H-Si

Beams: μ and e, π up to 300 GeV

➡ Large-scale test of O(100) HGCAL modules

More than 6 million events recorded!
Conclusions and outlook

- R&D converging on an optimized, constructible design
- CE expected to play a critical role in delivering HL-LHC physics
 - PF calorimeter able to accurately reconstruct electrons, photons, taus, and jets in extremely high pileup
 - Careful deployment of active materials to ensure adequate performance after 3000 fb^{-1}
- CE a first of its kind in collider physics!
Backup
Non-Gaussian noise

- High electric fields between adjacent cells can create avalanche multiplication of thermally generated charge carriers
- Effect worst in p-on-n sensors with large interpad gaps (CE TCAD simulation)
Hamburg model

Current increase caused by irradiation

\[\Delta I = \alpha \Phi_{eq} V \]

Temperature scaling

\[\frac{I(T_2)}{I(T_1)} = \left(\frac{T_2}{T_1} \right)^2 \exp \left(-\frac{E_{eff}}{2k_B} \left[\frac{1}{T_2} - \frac{1}{T_1} \right] \right) \]

1. Calculate current expected after irradiation
2. Scale to measurement temperature (-20 degC) and operation temperature (-30 degC)

- Parameters:
 - \(V \) = sensor or cell volume
 - \(\Phi_{eq} \) = Fluence per cm² equivalent to 1 MeV neutrons
 - \(\alpha = 5e-17 \) A/cm
 - \(k_B = 8.61733e-5 \) eV/K
 - \(T_{reference} = 293.15 \) K (20 degC)
 - \(T_{measurement} = 253.15 \) K (-20 degC)
 - \(T_{operation} = 243.15 \) K (-30 degC)
Irradiated samples

<table>
<thead>
<tr>
<th>Fluence (n_{eq}/cm^2)</th>
<th>1.5×10^{14}</th>
<th>5×10^{14}</th>
<th>7.5×10^{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. sensors (300 μm p-on-n)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. sensors (320 μm n-on-p common p-stop)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. sensors (320 μm n-on-p individual p-stop)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Switch card circuit

External Instruments

- HV
- LCR
- A

Sensor
- Probe Card
- Switch Card

.. up to 512 ..

.. switches ..

.. pogo pins ..

40k 10k 60n
1u
10M

MUX

CERN-LHCC-2017-023
Timing resolution

\[(S/N)_{\text{eff}} = \frac{(S/N)_{\text{ref}}(S/N)_n}{\sqrt{(S/N)^2_{\text{ref}} + (S/N)^2_n}}\]

\[\sigma(t_{\text{ref}} - t_i) = \sqrt{\left(\frac{A}{\sqrt{(S/N)}}\right)^2 + \left(\frac{B}{S/N}\right)^2 + C^2}\]