The CMS High Granularity Calorimeter for High Luminosity LHC

Rachel Yohay (Florida State University) On behalf of the CMS Collaboration 15th Vienna Conference on Instrumentation February 19, 2019

- Motivation
- Detector design
- Silicon sensor prototyping
- Performance
- Conclusions and outlook

- Motivation The focus of this talk
- Detector design
- Silicon sensor prototyping
- Performance
- Conclusions and outlook

Motivation

The Compact Muon Solenoid (CMS) detector

http://cms.web.cern.ch/news/cms-detector-design

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

R. Yohay

High luminosity physics and the endcap

- Physics goals of the High Luminosity LHC (HL-LHC) make specific performance demands of the endcap calorimeter
 - Measurement of vector boson fusion (VBF) Higgs production and WW scattering, processes identified by two characteristic forward jets
 - Searches for rare heavy particles associated with supersymmetry (SUSY) and other Standard Model (SM) extensions
 - Extend electron, photon, tau, and jet reconstruction to the endcaps to better exploit the dataset
 - Improved missing transverse energy (ME_T) reconstruction
- CMS upgrade philosophy: equal or better performance under HL-LHC conditions

Complete overhaul required

CERN-LHCC-2015-010

- PbWO₄ crystal transmission loss due to radiation damage
- Worsening energy resolution due to increased pileup

Detector design

High Granularity Calorimeter (CE)

CERN-LHCC-2017-023

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- CE covers $1.5 < \eta < 3.0$
- ~215 tonnes per endcap
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M si channels, 0.5 or 1 cm² cell size
- ~27000 si modules
- Power at end of HL-LHC: ~110 kW per endcap

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X₀ & ~1.3 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5 λ

VCI 2019 19 February 2019

High Granularity Calorimeter (CE)

CERN-LHCC-2017-023

Technical design approved by CERN LHC Experiments Committee (LHCC) spring 2018

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X₀ & ~1.3 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5 λ

Design in a nutshell

- Particle flow (PF) calorimeter, optimized for PU rejection and jet energy resolution (JER)
 - PU rejection required by high HL-LHC instantaneous luminosity
 - JER improved with respect to cone-based reconstruction
 - Good position resolution from fine longitudinal and transverse granularity to associate calorimeter segments to charged hadron tracks
 - High resolution tracking information used to estimate the energy of charged jet candidates
 - Low resolution calorimeter information "only" used to estimate the energy of neutrals

Design in a nutshell

CERN-LHCC-2017-023

Simulated MIP S/N after 3000 fb⁻¹ SiPM+scintillator aging

- Per-channel calibration with minimum-ionizing particles (MIPs) throughout HL-LHC lifetime imposes requirements on radiation tolerance
 - Dictates choice of active materials
 - Dictates geometry

Silicon sensor design

CERN-LHCC-2017-023

- n-on-p sensors for superior radiation hardness
- Cost optimization
 - Hexagonal sensors from 8" wafers
 - Thickness decreases as expected fluence increases
- Cell sizes (~ capacitance ~ noise) set by MIP signal-to-noise (S/N) requirement at end of life
- Threefold diamond symmetry permits easy grouping of trigger cells and association to readout chips
- Fractional variants to cover inner and outer boundaries

Active thickness (µm)	Cell size (cm²)	Cell capacitance (pF)	Expected fluence range (× 10 ¹⁵ n _{eq} /cm ²)	Initial MIP S/N	Smallest MIP S/N after 3000 fb ⁻¹
300	1.18	45	0.1-0.5	11	4.7
200	1.18	65	0.5-2.5	6	2.3
120	0.52	50	2-7	4.5	2.2

Silicon sensor design

M. Mannelli

- 300- and 200-µm sensors in physically thinned float zone (FZ) silicon
- 120-µm sensors in epitaxial high-resistivity silicon layer on lower resistivity substrate ("epi")
- "Mouse bites" for module mounting
- Dedicated small (low-capacitance ~ low-noise)
 calibration cells
- Common and individual p-stops under consideration

Common p-stop

Individual p-stop

192-channel wafer layout with calibration cells

R. Yohay

VCI 2019 19 February 2019

Silicon sensor prototyping

Prototyping timeline

Lessons learned: tracker R&D

> 1000

Depletion voltage (V)

10²

10 E

1000

900

800

700 -

600 -

500 ·

400

JINST 12 (2017) P06018

 $O = 300 \, \mu m$

ddFZ 300µm

• ddFZ 200µm - FZ 200µm

MCz 200µm

-🗆 - ddFZ 300µm -O-- ddFZ 200µm

---- FZ 200µm

n-in-p p-spray

- MCz 200µm

n-in-p p-stop

p-in-n

- Thin (≤300 µm) sensors required in regions of highest fluence
 - **Over-depleted operation** necessary for maximum charge collection
 - **Reduced full depletion** voltage \Rightarrow reduced leakage current \Rightarrow reduced power dissipation
- n-on-p sensors have better noise performance after irradiation than p-on-n

200 µm p-on-n pedestal-subtracted noise

Stores Counts 10³

R. Yohay

Lessons learned: CE R&D

- Difference in charge collection between p-on-n and n-on-p sensors small above 10¹⁵ n_{eq}/cm²
- Above ~6 × 10¹⁵ n_{eq}/cm², 100-μm epi n-on-p sensors (300 V bias) collect more signal charge than 120-μm ddFZ n-on-p sensors (600 V bias)
- Diode noise measurements agree with Hamburg model (linear dependence of current/volume on fluence)

Lessons learned: Hamamatsu 6"

for one 128-channel sensor

CERN-LHCC-2017-023

- Excellent sensor performance across 200 prototypes
 - Homogeneous leakage current across sensor area
 - Per-cell leakage current at 1000 V before irradiation of order 1 nA (spec is ≤100 nA per cell, ≤20 µA per sensor at 800 V and 20°C)
 - Breakdown voltage typically >1 kV
- Hamamatsu established as a reliable vendor
 - Leakage current measurements in agreement with those supplied by Hamamatsu
 - Decision made to develop 8" sensors
- Development of switch + probe card system for fast sensor characterization

VCI 2019 19 February 2019

Lessons learned: Hamamatsu 6"

- Sensors exposed to $1.5-7.5 \times 10^{14} n_{eq}/cm^2$
- Performance after neutron irradiation in line with expectations
 - Leakage current scales with cell area
 - Dependence of leakage current per unit volume on fluence agrees with Hamburg model expectation
- Noise measurements needed to confirm non-Gaussian tails in p-on-n sensors

Lessons learned: Hamamatsu 8'

•	CMS POINT
	Compact M

- Stepper sensors considered an 8" proof of principle for investing in full-wafer lithography
- Commissioning of different measurement techniques for quality control
 - Sensor geometry and DC coupling precludes an integrated biasing circuit with a single grounded contact point for IV and CV testing ⇒ multiple cells need to be biased

simultaneously to replicate operating conditions

- "Seven-needle" measurement as reference
- Probe card with pogo pin contacts for fast characterization

E. Sicking

Lessons learned: Hamamatsu 8

Performance

Test beam: 2016

<ΣE> / beam er

<2E> / beam e

- 6" modules with different depth configurations
- First demonstrations of:
 - MIP calibration
 - Shower reconstruction
 - Time tagging core of showers
 - Resolution on time difference between neighboring cells of a sensor ~25 ps at an effective S/N of 100
 - Good timing precision can be achieved for high energy deposits found in the core of electromagnetic and hadronic showers

Test beam: 2018

Beam Energy (GeV)

VCI 2019 19 February 2019

Conclusions and outlook

- R&D converging on an optimized, constructible design
- CE expected to play a critical role in delivering HL-LHC physics
 - PF calorimeter able to accurately reconstruct electrons, photons, taus, and jets in extremely high pileup
 - Careful deployment of active materials to ensure adequate performance after 3000 fb⁻¹
- CE a first of its kind in collider physics!

Backup

Non-Gaussian noise

CERN-LHCC-2017-023

- High electric fields between adjacent cells can create avalanche multiplication of thermally generated charge carriers
- Effect worst in p-on-n sensors with large interpad gaps (CE TCAD simulation)

Hamburg model

M. Valentan

Current increase caused by irradiation

$$\Delta I = \alpha \, \Phi_{\rm eq} \, V$$

Temperature scaling

$$\frac{I(T_2)}{I(T_1)} = \left(\frac{T_2}{T_1}\right)^2 \exp\left(-\frac{E_{\text{eff}}}{2k_{\text{B}}} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]\right)$$

- 1. Calculate current expected after irradiation
- 2. Scale to measurement temperature (-20 degC) and operation temperature (-30 degC)

• Parameters:

- V = sensor or cell volume
- Φ_{eq} = Fluence per cm² equivalent to 1 MeV neutrons
- α = 5e-17 A/cm
- E_{eff} = 1.21 eV (from <u>http://iopscience.iop.org.ezproxy.cern.ch/article/10.1088/1748-0221/8/10/P10003/meta</u>)
- kB = 8.61733e-5 eV/K
- T_{reference} = 293.15 K (20 degC)
- T_{measurement} = 253.15 K (-20 degC)
- T_{operation} = 243.15 K (-30 degC)

Irradiated samples

Fluence (n _{eq} /cm²)	1.5 × 10 ¹⁴	5 × 10 ¹⁴	7.5 × 10 ¹⁴
No. sensors (300 µm p-on-n)	2	2	2
No. sensors (320 µm n-on-p common p-stop)	2	2	2
No. sensors (320 µm n-on-p individual p-stop)	2	2	2

Switch card circuit

CERN-LHCC-2017-023

Timing resolution

JINST 13 (2018) P10023

$$(S/N)_{\text{eff}} = \frac{(S/N)_{\text{ref}}(S/N)_n}{\sqrt{(S/N)_{\text{ref}}^2 + (S/N)_n^2}}$$

$$\sigma(t_{\rm ref} - t_i) = \sqrt{\left(\frac{A}{\sqrt{(S/N)}}\right)^2 + \left(\frac{B}{S/N}\right)^2 + C^2}$$