The Large Enriched Germanium Experiment for Neutrinoless ββ Decay (LEGEND)

Photo by Jacek Dylag (Unsplash)

Michael Willers Lawrence Berkeley National Laboratory 19.02.2019

Unterstützt von / Supported by

Alexander von Humboldt

A very short introduction to neutrinoless double beta decay

$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}$

Two-neutrino double beta decay ($2\nu\beta\beta$)

- Only decay possible in certain isotopes (⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe, ...)
- Predicted by the Standard Model
- Observed experimentally!

$(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Neutrinoless double beta decay ($0\nu\beta\beta$)

- Violates lepton number by 2 units \rightarrow new physics
- Determines the nature of the neutrino $\rightarrow v = \overline{v}$
- Can provide information on the v mass
- so far unobserved

The Large Enriched Germanium Experiment for Neutrinoless ßß Decay

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

19. Feb. 2019 Michael Willers (LBL) - VCI 2019

⁷⁶Ge-based 0νββ decay search

- $Q_{\beta\beta} = 2039 \text{ keV}$
- Excellent energy resolution \rightarrow 2.2 3 keV FWHM at Q_{ββ}
- Very high detection efficiency
 → source = detector
- Enrichment to > 88% in ⁷⁶Ge possible
- Excellent background rejection

 → pulse shape & detector granularity
- Very low backgrounds achieved

The MAJORANA DEMOSTRATOR and GERDA Experiments

MAJORANA DEMONSTRATOR @ SURF

- Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- Low noise electronics improves pulse shape discrimination
- Low energy threshold (helps reject background, extended lowenergy physics program (e.g. dark matter search))

Both:

- Clean fabrication techniques
- Control of surface exposure (cosmogenic activation)

GERDA @ LNGS

- Detectors (enr76Ge) in liquid argon (LAr)
- LAr acts as an active shield (no Pb)
 → background tagging by LAr scintillation light & coincident signals
- Lowest background and best resolution $0\nu\beta\beta$ decay experiments
- Combined detector mass: ~ 65 kg of enr76Ge

The MAJORANA DEMOSTRATOR and GERDA Experiments

MAJORANA DEMONSTRATOR @ SURF

DOI 10.5281/zenodo.1286900

Background \rightarrow 4.7±0.8 x 10⁻³ cts/(keV kg yr) **Resolution (FWHM)** \rightarrow 2.5 keV @ Q_{ββ} Sensitivity \rightarrow 4.8 x 10²⁵ yr (90% CL) Limit \rightarrow T_{1/2} > 2.7 x 10²⁵ yr

from other groups and experiments

Michael Willers (LBL) - VCI 2019 19. Feb. 2019

DOI 10.5281/zenodo.1287604

Background \rightarrow 0.6^{+0.4}-0.2 x 10⁻³ cts/(keV kg yr) **Resolution (FWHM)** \rightarrow 3 keV @ Q_{ββ} Sensitivity \rightarrow 1.1 x 10²⁶ yr (90% CL) Limit $\rightarrow T_{\frac{1}{2}} > 0.9 \times 10^{26} \text{ yr}$

LEGEND strategy: select best technologies based on experiences of MAJORANA DEMONSTRATOR and GERDA, as well as contributions

The LEGEND Experiment

First stage (LEGEND-200):

- (Up to) 200 kg of detectors (enr76Ge)
- Utilise existing GERDA infrastructure at LNGS + modifications as needed
- Target exposure: 1 t yr
- BG goal: 0.6 cts / (FWHM t yr)
- Data-taking start in ~ 2021

Subsequent stages (LEGEND-1000):

- 1000 kg of detectors (enr⁷⁶Ge) (staged)
- BG goal: reduction to < 0.1 cts / (FWHM t yr)
- Location: TBD
 - \rightarrow required depth (^{77m}Ge) under investigation

LEGEND-200

- roof of clean room plastic muon veto lock 40 0 glove box floor of clean room cryostat $(\vec{0} 4m, 64m^3)$ Ge detector array & LAr veto system 0 PMT of muon veto water tank $(\emptyset 10m, 590m^3)$
- •Utilise existing GERDA infrastructure at LNGS
- Large enough for 200 kg of enriched detectors
- *Exposure*: 1 ton yr, *Sensitivity* > 10^{27} yr
- Background goal: 0.6 cts / (FWHM t yr)
- Modifications:

 - •raise clean room roof
 - •new lock
- •new cabling, detector suspension, feedthroughs • Detectors:
- BroadEnergyGe (BEGe) detectors from GERDA
- P-type Point Contact (PPC) detectors from MAJORANA
- new inverted coaxial detectors (baseline 1.5 kg)
- Funding for LEGEND-200 almost secured, first orders for additional detectors placed!
- Data-taking start in ~ 2021

• new electronics

LEGEND-200: larger enrGe detectors

- •GERDA BEGe: ~ 0.7 kg
- MJD PPCs: ~ 0.8 kg
- •Larger detectors \rightarrow less cables, connectors and readout electronics → **lower background**
- •New concept: Inverted Coaxial Point-Contact Ge detectors (ICPC) DOI 10.1016/j.nima.2011.10.008
 - Combines advantages of Coaxial and BEGe/PPC detectors: high mass / lower depletion voltage / excellent pulse shape discrimination
 - Large mass of up to 3 kg (R&D for 6 kg ongoing) \rightarrow "production" ~ 1.5 kg

Orders for LEGEND-200 detectors placed early 2019!

LEGEND-200: Front-End Electronics

ultra-clean Low Mass Front-End of MAJORANA DEMONSTRATOR

Preamplifi Cable Front end etecto **Preamplifier (CC4)** н

19. Feb. 2019 Michael Willers (LBL) - VCI 2019

Baseline Design: Combine LAr-operated preamplifier of GERDA with the

→ Preamplifier (CC4) developed by **INFN / University of Milan**, Italy → Low Mass Front-End (LMFE) developed by Lawrence Berkeley Laboratory

Based on current GERDA preamplifier (CC3) **Differential output** Operation in LAr

Amorphous germanium feedback resistor R_f (few G Ω in LAr)

Feedback and pulser (C_F and C_P): stray capacitance between traces

Bare die JFET: Moxtek MX11

Sputtered Ti/Au traces

Fused silica substrate / Suprasil

+ new cables (Axon pico-Coax) & connectors + new LMFE mount

LEGEND-1000

- Detector array: 1 t of ⁷⁶Ge(enr)
- Separate arrays, each payload ~ 200 250 kg
- Exposure: 10 t yr
- Sensitivity: > 10²⁸ yr
- Background target: < 0.1 cts / (FWHM t yr)
- Location: TBD (studies concerning cosmogenic background from ^{77m}Ge onging)
- Potential to use depleted underground Ar is investigated (⁴²Ar background)
 - → divide LAr volume into small depleted volumes
 - surrounding detectors and large natural LAr volume
- Many R&D efforts → very high mass detectors, ...

LEGEND - Discovery Potential

⁷⁶Ge (88% enr.)

LEGEND - Exclusion Sensitivity

⁷⁶Ge (88% enr.)

LEGEND - Schedule

Install New Lock, Calibration, infrastructure

Ton-Scale Down-Select Process

19. Feb. 2019 Michael Willers (LBL) - VCI 2019

2021 2022

Install Detectors

LEGEND-200 Data runs

LEGEND-1000 Design/Build 2021-2029

Conclusions & Outlook

- Discovery of $0\nu\beta\beta$ would have far-reaching consequences in particle physics $\rightarrow v = \overline{v}$ / Lepton Number Violation
- The next generation of $0\nu\beta\beta$ decay experiments will require reduced backgrounds and increased detector mass
- ⁷⁶Ge detectors have demonstrated the lowest backgrounds and best energy resolution \rightarrow well suited technology for ton-scale $0\nu\beta\beta$ experiment
- LEGEND will build upon the success of MJD and GERDA \rightarrow pursue a staged approach: starting with 200 kg (LEGEND-200) and gradually increasing (LEGEND-1000)
- Funding for LEGEND-200 almost secured, first orders for additional detectors placed! Design studies and R&D for LEGEND-1000 ongoing

Acknowledgements

- •We appreciate the support of our sponsors:
 - German Federal Ministry for Education and Research (BMBF)
 - German Research Foundation (DFG), Excellence Cluster Universe
 - German Max Planck Society (MPG)
 - U.S. National Science Foundation, Nuclear Physics (NSF)
 - U.S. Department of Energy, Office of Nuclear Physics (DOE-NP)

 - Italian Instituto Nazionale di Fisica Nucleare (INFN)
 - Swiss National Science Foundation (SNF)
 - Polish National Science Centre (NCN)
 - Foundation for Polish Science
 - Russian Foundation for Basic Research (RFBR)
 - Research Council of Canada, Natural Sciences and Engineering
 - Canada Foundation for Innovation, John R. Evans Leaders Fund
- •We thank our hosts and colleagues at LNGS

• U.S. Department of Energy, Through the LANL, LBNL & ORNL LDRD programs (LDRD)

We thank the ORNL Leadership Computing Facility and the LBNL NERSC Center

Thank you for your attention!