

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

New Test Beam Results of 3D and Pad Detectors Constructed with Poly-Crystalline CVD Diamond

Vienna Conference on Instrumentation

Michael Reichmann on behalf of the RD42 Collaboration

19th of February, 2019

Table of Contents

Motivation

Introduction

- 3 3D Pixel Detectors
- Pad Detectors (Rate Studies)

5 Conclusion

6 Outlook

Section 1

Motivation

Diamond as Detector Material

- \bullet innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- $\bullet\,$ current detectors is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- $\bullet \rightarrow \text{CERN}$ R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material

- innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet current detectors is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- ullet ightarrow CERN R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

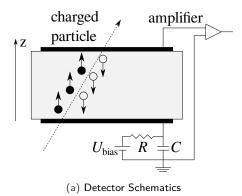
- properties
 - radiation tolerant
 - isolating material
 - high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - after $1 \cdot 10^{16} \, n/cm^2$ the mean drift path in diamond larger than in silicon

Diamond as Detector Material

- innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- $\bullet\,$ current detectors is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- $\bullet\,\rightarrow\,\text{CERN}$ R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - \blacktriangleright after $1\cdot 10^{16}\,n/cm^2$ the mean drift path in diamond larger than in silicon

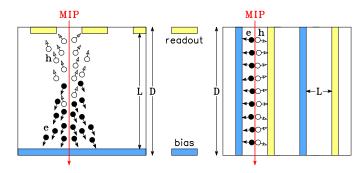

Work of RD42:

- investigate signals and radiation tolerance in various detector designs:
 - $\blacktriangleright \ \mathbf{pad} \rightarrow \mathsf{full} \ \mathsf{diamond} \ \mathsf{as single} \ \mathsf{cell} \ \mathsf{readout}$
 - $\blacktriangleright\,$ pixel \rightarrow diamond sensors on state-of-the-art pixel chips
 - \blacktriangleright 3D pixel \rightarrow detector with design to reduce drift distance

Section 2

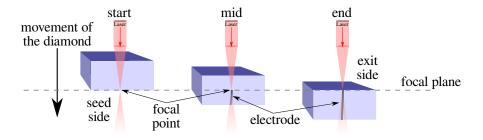
Introduction

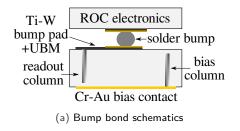
Diamond as Particle Detector

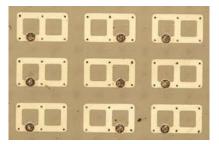


(b) 15 cm ø pCVD Diamond Wafer

- detectors operated as ionisation chambers
- metallisation on both sides
- poly-crystals produced in large wafers

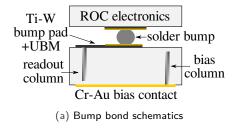

Working Principle

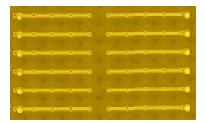

- after large radiation fluence all detectors become trap limited
- bias and readout electrode inside detector material
- ullet same thickness $D \rightarrow$ same amount of induced charge \rightarrow shorter drift distance L
- increase collected charge in detectors with limited mean drift path (Schubweg)


Laser drilling

- "drilling" columns using 800 nm fs-LASER (Oxford)
- convert diamond into resistive mixture of carbon phases (i.a. DLC, graphite, ...)
- $\bullet\,$ usage of Spatial Light Modulation (SLM) to correct for vertical aberration
- \bullet initial column yield ${\sim}90\,\%$ \rightarrow now ${\geq}99\,\%$
- \bullet initial column diameter 6 \sim 10 $\mu m \rightarrow$ now 2.6 μm

Bump Bonding





(b) 3×2 bump pads

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap (\sim 15 µm) to the surface to avoid a high voltage break-through

Bump Bonding

(b) 1×5 bump pads

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap (\sim 15 µm) to the surface to avoid a high voltage break-through

Progress in Diamond Detectors

3D Detectors - History in Diamonds:

- proved that 3D works in pCVD diamond
- $\bullet\,$ scale up the number of columns per detector: $\mathcal{O}\left(100\right) \rightarrow \mathcal{O}\left(1000\right)$ (x40)
- $\bullet\,$ reducing the cell size: $150\,\mu m \times 150\,\mu m \to 50\,\mu m \times 50\,\mu m \to 25\,\mu m \times 25\,\mu m$ (soon)
- $\bullet\,$ reducing the diameter of the columns: $6\sim10\,\mu m\to2.6\,\mu m\to1\sim2\,\mu m$ (soon)
- $\bullet\,\rightarrow$ increasing column yield: ${\sim}90\,\%\,\rightarrow\geq99\,\%$
- $\bullet\,$ recently tested first irradiated 50 μm \times 50 μm 3D detector (3.5 $\cdot\,10^{15}\,n/cm^2)$

3D Pixel Detectors:

- visible improvements with each step reducing the cell size
- all worked as expected (to first order)

Rate Studies in Pad Detectors:

- \bullet particle fluxes from $1\,\text{kHz}/\text{cm}^2$ up to $20\,\text{MHz}/\text{cm}^2$
- $\bullet\,$ irradiations up to $4\cdot 10^{15}\,n/cm^2$

Section 3

3D Pixel Detectors

1×5 Ganging

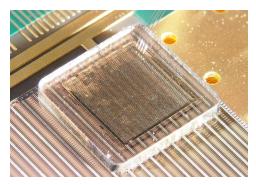
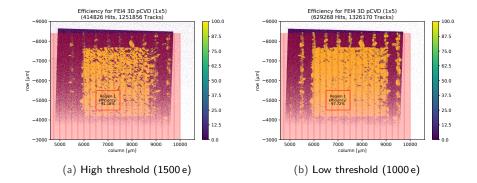



Figure: Final Detector

- \bullet readout chip (ROC): ATLAS FEI4 (50 $\mu m \times 250 \, \mu m)$
- \bullet Size: $5\,mm \times 5\,mm$
- $\bullet\,$ active area $3\,mm \times 3\,mm$
- tin-silver bump bonding at IFAE (Barcelona)

Efficiencies at CERN Beam Test

- \bullet spatial resolution of ${\sim}3\,\mu m$
- two different tunings of the FEI4 chip
- efficiency with low threshold significantly higher: 97.7 %
- inefficiencies most likely due to bump bonding issues

Time Over Threshold

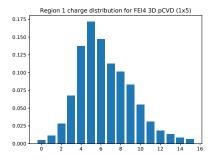


Figure: Time over threshold

- $\bullet~5\,tot\approx 11\,000\,e$
- $\bullet\,$ mean of the ToT distribution: $6.73 \rightarrow 14\,800\,e$
- $\bullet~81\,\%$ of the charge collected

$2\times 3~\text{Ganging}$

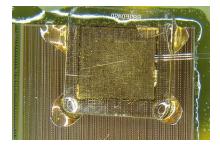
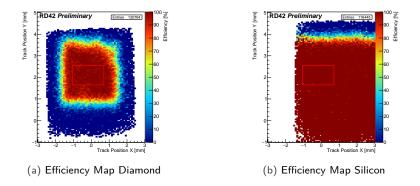
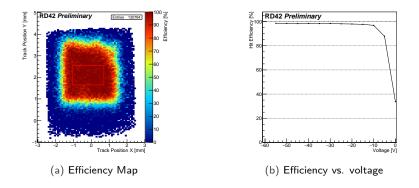



Figure: Final Detector


- readout chip (ROC): CMS PSI46digv2.1repspin (100 $\mu m \times 150 \, \mu m)$
- Size: $5 \text{ mm} \times 5 \text{ mm}$
- $\bullet\,$ active area $3.5\,mm \times 3.5\,mm$
- indium bump-bonding (Princeton)

Efficiencies - First PSI Beam Test

- beam test right after the first bump bonding (top right corner badly bonded)
- spatial resolution of $\mathcal{O}(100\,\mu\text{m})$
- efficiency in red fiducial area: Diamond: 99.1 %, Silicon: 99.9 %

Efficiencies - First PSI Beam Test

- beam test right after the first bump bonding (top right corner badly bonded)
- spatial resolution of $\mathcal{O}(100\,\mu\text{m})$
- effective efficiency (relative to silicon) in red fiducial area: 99.2 %
- already fully efficient at 30 V
- ROC stopped working after this beam test

Efficiencies - CERN Beam Test

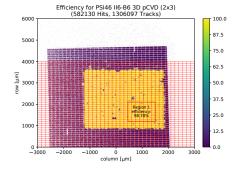
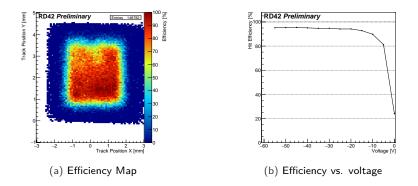
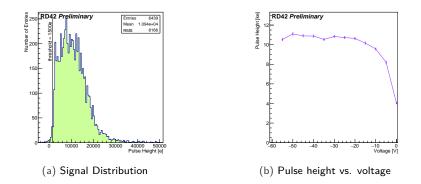



Figure: Efficiency at threshold of ${\sim}3500\,\text{e}$


- high resolution measurement at CERN
- find non-working/non-connected cells
- sensor twice re-bump-bonded with the same indium (no reprocessing)
 - no removal of old bumps, no change of surface metallisation

Efficiencies - Second PSI Beam Test

- sensor twice re-bump-bonded with the same indium (no reprocessing)
- effective efficiency in red fiducial area: 97.3 %
- $\bullet\,$ already fully efficient at 30 V
- \bullet only very small area working well \rightarrow many bump bond problems

Pulse Height - Second Beam Test

- wrong pulse height calibration in first beam test
- $\bullet\,$ full charge collection also at 30 V
- $\bullet\,$ mean pulse height: 11 000 e $\rightarrow \simeq$ 14 000 e at CERN $\rightarrow\,$ consistent with 1 $\times\,$ 5 data

Section 4

Pad Detectors (Rate Studies)

Leakage Currents

Leakage Currents

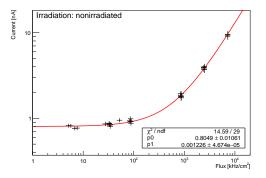
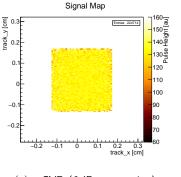
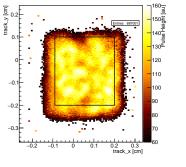
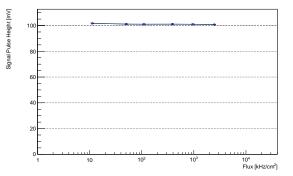



Figure: Leakage Current of a non-irradiated pCVD diamond

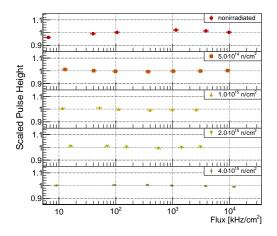

- very low base leakage current (no beam) of $\mathcal{O}(1 \text{ nA})$
- leakage current of most of the diamonds linear in flux
- basis of most diamond beam monitors at CERN

0.2

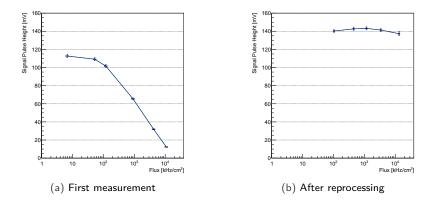
Signal Maps



(b) pCVD


- uniform signal distribution in scCVD
- region dependent signal in pCVD

Silicon Diode


- silicon diode as reference
- as expected no dependence on rate

Rate Studies in Irradiated pCVD

- rate scaled to the mean
- pulse height very stable after irradiation
- \bullet using rad hard electronics \rightarrow noise stays the same

Rate Dependence

- \bullet less than 20 % of the tested diamonds show rate dependence $>\!10\,\%$
- \bullet very large rate dependence at the first measurement (>90 %)
- after reprocessing and surface cleaning with RIE very stable behaviour (~2%)
- feasible to "fix" bad diamonds

Section 5

Conclusion

Conclusion

Conclusion

- strongly improved fabrication of 3D diamonds
 - 40x more cells
 - smaller cell size
 - thinner columns
- 3D Detectors work well in pCVD diamond
 - ▶ 99.2% efficiency
 - nearly full charge collection
- \bullet rate tests of irradiated pCVD diamonds up to $4\cdot 10^{15}\,n/cm^2$ and $20\,MHz/cm^2$
- \bullet irradiated pCVD diamond does not show rate dependence to $\mathcal{O}\left(2\,\%\right)$
- possible to repair pCVD diamonds with surface issues

Section 6

Outlook

- $\bullet\,$ results of $3.5\cdot10^{15}\,n/cm^2$ irradiated $50\,\mu m \times 50\,\mu m$ detectors
- \bullet continue irradiation up to $1\cdot 10^{16}\,n/cm^2$
- $\bullet\,$ test both 50 $\mu m \times$ 50 μm and 25 $\mu m \times$ 25 μm pixel detectors
- $\bullet\,$ reduce column diameter to $1\sim 2\,\mu m$
- \bullet build pixel device on newest RD53 chip (50 $\mu m \times 50 \, \mu m$ pixel pitch)
- $\bullet\,$ continue scale up by 10x

