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Motivation Diamond as Detector Material

Diamond as Detector Material

innermost tracking layers → highest radiation damage O
(
GHz/cm2)

current detectors is designed to survive ∼12 month in High-Luminosity LHC
→ CERN R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

properties
▶ radiation tolerant
▶ isolating material
▶ high charge carrier mobility
▶ smaller signal than in silicon with same thickness (large bandgap)
▶ after 1 · 1016 n/cm2 the mean drift path in diamond larger than in silicon

Work of RD42:

investigate signals and radiation tolerance in various detector designs:
▶ pad → full diamond as single cell readout
▶ pixel → diamond sensors on state-of-the-art pixel chips
▶ 3D pixel → detector with design to reduce drift distance
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Introduction
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Introduction Diamond as Particle Detector

Diamond as Particle Detector

z

charged
particle

amplifier

RUbias C

(a) Detector Schematics (b) 15 cm � pCVD Diamond Wafer

detectors operated as ionisation chambers

metallisation on both sides

poly-crystals produced in large wafers
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Introduction 3D Detectors

Working Principle

after large radiation fluence all detectors become trap limited

bias and readout electrode inside detector material

same thickness D → same amount of induced charge → shorter drift distance L

increase collected charge in detectors with limited mean drift path (Schubweg)
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Introduction 3D Detectors

Laser drilling

“drilling” columns using 800 nm fs-LASER (Oxford)

convert diamond into resistive mixture of carbon phases (i.a. DLC, graphite, ...)

usage of Spatial Light Modulation (SLM) to correct for vertical aberration

initial column yield ∼90 % → now ≥99 %

initial column diameter 6 ∼ 10 µm → now 2.6 µm

start mid end
movement of
the diamond

focal
point

seed
side

exit
side

electrode

focal plane

Laser Laser Laser
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Introduction 3D Detectors

Bump Bonding

ROC electronics

solder bump
Ti-W 

bump pad
+UBM
readout
column

bias
column

Cr-Au bias contact

(a) Bump bond schematics (b) 3 × 2 bump pads

connection to bias and readout with surface metallisation

ganging of cells to match pixel pitch of readout-chip (ROC)

small gap (∼15 µm) to the surface to avoid a high voltage break-through
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Introduction Achievements

Progress in Diamond Detectors

3D Detectors - History in Diamonds:

proved that 3D works in pCVD diamond
scale up the number of columns per detector: O (100) → O (1000) (x40)
reducing the cell size: 150 µm × 150 µm → 50 µm × 50 µm → 25 µm × 25 µm (soon)
reducing the diameter of the columns: 6 ∼ 10 µm → 2.6 µm → 1 ∼ 2 µm (soon)
→ increasing column yield: ∼90 % → ≥99 %

recently tested first irradiated 50 µm × 50 µm 3D detector (3.5 · 1015 n/cm2)

3D Pixel Detectors:

visible improvements with each step reducing the cell size
all worked as expected (to first order)

Rate Studies in Pad Detectors:

particle fluxes from 1 kHz/cm2 up to 20 MHz/cm2

irradiations up to 4 · 1015 n/cm2
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3D Pixel Detectors 1 × 5 Ganging

1 × 5 Ganging

Figure: Final Detector

readout chip (ROC): ATLAS FEI4 (50 µm × 250 µm)
Size: 5 mm × 5 mm
active area 3 mm × 3 mm
tin-silver bump bonding at IFAE (Barcelona)
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3D Pixel Detectors 1 × 5 Ganging

Efficiencies at CERN Beam Test

5000 6000 7000 8000 9000 10000
column [ m]

9000

8000

7000

6000

5000

4000

3000

ro
w

 [
m

]

Region 1
efficiency:

91.18%

Efficiency for FEI4 3D pCVD (1x5)
(414826 Hits, 1251856 Tracks)

0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

(a) High threshold (1500 e)
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(b) Low threshold (1000 e)

spatial resolution of ∼3 µm
two different tunings of the FEI4 chip
efficiency with low threshold significantly higher: 97.7 %

inefficiencies most likely due to bump bonding issues
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3D Pixel Detectors 1 × 5 Ganging

Time Over Threshold
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Figure: Time over threshold

5 tot ≈ 11 000 e

mean of the ToT distribution: 6.73 → 14 800 e

81 % of the charge collected
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3D Pixel Detectors 2 × 3 Ganging

2 × 3 Ganging

Figure: Final Detector

readout chip (ROC): CMS PSI46digv2.1repspin (100 µm × 150 µm)

Size: 5 mm × 5 mm

active area 3.5 mm × 3.5 mm

indium bump-bonding (Princeton)
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3D Pixel Detectors 2 × 3 Ganging

Efficiencies - First PSI Beam Test
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(a) Efficiency Map Diamond
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(b) Efficiency Map Silicon

beam test right after the first bump bonding (top right corner badly bonded)
spatial resolution of O (100 µm)
efficiency in red fiducial area: Diamond: 99.1 %, Silicon: 99.9 %

already fully efficient at 30 V
ROC stopped working after this beam test
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3D Pixel Detectors 2 × 3 Ganging

Efficiencies - First PSI Beam Test

Track Position X [mm]
3− 2− 1− 0 1 2 3

T
ra

ck
 P

os
iti

on
 Y

 [m
m

]

1−

0

1

2

3

4

5
Entries  120764

E
ffi

ci
en

cy
 [%

]

0

10

20

30

40

50

60

70

80

90

100
Entries  120764 PreliminaryRD42

(a) Efficiency Map
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(b) Efficiency vs. voltage

beam test right after the first bump bonding (top right corner badly bonded)
spatial resolution of O (100 µm)
effective efficiency (relative to silicon) in red fiducial area: 99.2 %
already fully efficient at 30 V
ROC stopped working after this beam test
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3D Pixel Detectors 2 × 3 Ganging

Efficiencies - CERN Beam Test
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Figure: Efficiency at threshold of ∼3500 e

high resolution measurement at CERN
find non-working/non-connected cells
sensor twice re-bump-bonded with the same indium (no reprocessing)

▶ no removal of old bumps, no change of surface metallisation
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3D Pixel Detectors 2 × 3 Ganging

Efficiencies - Second PSI Beam Test

Track Position X [mm]
3− 2− 1− 0 1 2 3

T
ra

ck
 P

os
iti

on
 Y

 [m
m

]

1−

0

1

2

3

4

5
Entries  148782

E
ffi

ci
en

cy
 [%

]
0

10

20

30

40

50

60

70

80

90

100
Entries  148782 PreliminaryRD42

(a) Efficiency Map
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(b) Efficiency vs. voltage

sensor twice re-bump-bonded with the same indium (no reprocessing)
effective efficiency in red fiducial area: 97.3 %

already fully efficient at 30 V
only very small area working well → many bump bond problems
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3D Pixel Detectors 2 × 3 Ganging

Pulse Height - Second Beam Test
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(a) Signal Distribution
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(b) Pulse height vs. voltage

wrong pulse height calibration in first beam test

full charge collection also at 30 V

mean pulse height: 11 000 e → ≃14 000 e at CERN → consistent with 1 × 5 data
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Section 4

Pad Detectors (Rate Studies)
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Pad Detectors (Rate Studies) Leakage Currents

Leakage Currents
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Figure: Leakage Current of a non-irradiated pCVD diamond

very low base leakage current (no beam) of O (1 nA)
leakage current of most of the diamonds linear in flux
basis of most diamond beam monitors at CERN
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Pad Detectors (Rate Studies) Signal Maps

Signal Maps
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Signal Map

(a) scCVD (6 dB attenuation)
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(b) pCVD

uniform signal distribution in scCVD

region dependent signal in pCVD
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Pad Detectors (Rate Studies) Rate Studies

Silicon Diode
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as expected no dependence on rate
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Pad Detectors (Rate Studies) Rate Studies

Rate Studies in Irradiated pCVD
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rate scaled to the mean
pulse height very stable after irradiation
using rad hard electronics → noise stays the same
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Pad Detectors (Rate Studies) Rate Studies

Rate Dependence
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(a) First measurement
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(b) After reprocessing

less than 20 % of the tested diamonds show rate dependence >10 %
very large rate dependence at the first measurement (>90 %)
after reprocessing and surface cleaning with RIE very stable behaviour (∼2 %)
feasible to “fix” bad diamonds
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Section 5

Conclusion
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Conclusion

Conclusion

strongly improved fabrication of 3D diamonds
▶ 40x more cells
▶ smaller cell size
▶ thinner columns

3D Detectors work well in pCVD diamond
▶ 99.2 % efficiency
▶ nearly full charge collection

rate tests of irradiated pCVD diamonds up to 4 · 1015 n/cm2 and 20 MHz/cm2

irradiated pCVD diamond does not show rate dependence to O (2 %)

possible to repair pCVD diamonds with surface issues
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Section 6

Outlook
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Outlook

Outlook

results of 3.5 · 1015 n/cm2 irradiated 50 µm × 50 µm detectors

continue irradiation up to 1 · 1016 n/cm2

test both 50 µm × 50 µm and 25 µm × 25 µm pixel detectors

reduce column diameter to 1 ∼ 2 µm

build pixel device on newest RD53 chip (50 µm × 50 µm pixel pitch)

continue scale up by 10x
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