

The CMS Outer Tracker for the High Luminosity LHC

Erik Butz for the CMS Collaboration

Institute of Experimental Particle Physics (ETP)

High Luminosity LHC

Luminosity upgrade for post-LS3 running

- 4000 fb⁻¹ integrated luminosity
- Peak luminosity ~7.5x10³⁴ cm⁻¹s⁻¹
- Pile-up of up to 200
- Hit rates up to 3 GHz/cm² in innermost layers (~3 cm)
- Inner layers of pixel detectors (r = few cm) fluences in excess of 10¹⁶ MeV neutron equivalent/cm²
 - Even outer layers "far away" from interaction point will see >10¹⁴ MeV neutron equivalent/cm²

*) The CMS High Granularity Calorimeter for the High Luminosity LHC,Rachel Yohay, today 14:00, EI7 The CMS ECAL Phase-2 Upgrade for High Precision Timing and Energy Measurements, Federico Ferri, today 17:45, EI9 already yesterday: Development of the CMS Mip Timing Detector, Marco Toliman Lucchini

Why change the current tracker?

- Many layers of current strip tracker will become in-operational because of either leakage current or full depletion voltage limitations at 1 ab-1
 - \rightarrow full tracker replacement needed early in Run-4 at the latest

Phase-0 Outer Tracker at 1000 fb⁻¹ at -20°C coolant set point

CMS Outer Tracker – post LS3

How do we get from here*)...

... to here ?

*) Operational Experience of the Phase-1 CMS Pixel Detector, Benedikt Vormwald, today, 16:55, EI7

- TB2S = Tracker Barrel [with] 2S [Modules]
- TBPS = Tracker Barrel [with] PS [Modules]
- TEDD = Tracker Endcap Double Disk

Coverage up to $\eta \sim 2.5$

Coverage up to $\eta \sim 2.5$

Tracking \rightarrow with pixel up to $\eta \sim 4$

L1 triggering

Coverage up to $\eta \sim 2.5$

Tracking \rightarrow with pixel up to $\eta \sim 4$

L1 triggering

Tilted geometry for better trigger performance and reduction in #modules

Coverage up to $\eta \sim 2.5$

Tracking \rightarrow with pixel up to $\eta \sim 4$

L1 triggering

Tilted geometry for better trigger performance and reduction in #modules

Combination of micro-strips and macro-pixels

Tracks at L1

- \rightarrow be more selective already at L1
- \rightarrow solution: include tracks into L1 decision
- Central concept: pT modules
 - Two silicon sensors with small spacing in a module
 - Flex hybrid concept to get data from both sensors to one ASIC → select track "stubs"
- Different sensor spacing for different parts of the detector
- Acceptance window can be tuned
- Track selection threshold: 2 GeV

Prototype hybrid

Tilted Barrel Geometry

Track stubs that cross different modules in lower and upper sensor are lost
With tilted geometry ineffiencies are recovered

Geometry from technical proposal

Only two basic type of modules (compare to 15 in phase-0 CMS tracker)

2S Modules

Two strip sensors with 5 cm x 90 μ m strips

Sensor is $10 \times 10 \text{ cm}^2$ large \rightarrow two sets of strips

PS Modules \rightarrow Module with one (Macro-)Pixel and one strip sensor

Sensor size: 5x10 cm²

Strips: 2.5 cm x 100 μm

Macro Pixels: 1.5 mm x 100 μm

Only two basic type of modules (compare to 15 in phase-0 CMS tracker)

2S Modules

- Two strip sensors with 5 cm x 90 μ m strips
- Sensor is $10 \times 10 \text{ cm}^2$ large \rightarrow two sets of strips
- **PS** Modules \rightarrow Module with one (Macro-)Pixel and one strip sensor
 - Sensor size: 5x10 cm²
 - Strips: 2.5 cm x 100 μm
 - Macro Pixels: 1.5 mm x 100 μm

ASICs in the CMS Outer Tracker

2S

Service electronics on the silicon modules

- Each module has frontend- and service hybrid(s)
- Frontend hybrid houses readout (CBC,SSA,MPA), and concentrator (CiC) chip
- Service hybrid(s) houses:
 - **I**pGBT (low-power Gigabit Transceiver, common development for HL-LHC experiments)
 - VTRx+ (Versatile TRansceiver plus, common development for HL-LHC experiments)
 - DCDC converters (common development for HL-LHC experiments)
 - **Module is the system** \rightarrow no further card/aggregator between it and backend

Multi-stage DCDC conversion

- Same amount of space available in service channels for cables → more power through ~same cable x-section
- Aim to reduce losses on the cables as much as possible (reminder: today 1.25/2.5 V directly from PSU to modules!)
- Supply voltage from PSU 10-12 V
- First stage DCDC converter 10-12 V \rightarrow 2.5 V

Second stage DCDC converters 2.5 V \rightarrow 1.2 V, 2.5 V \rightarrow 1.0 V

Material Budget

Material Budget

1.6

1.8

2.0

2.2

2.4 2.6

η

Despite increased number of channels, material budget much reduced compared to phase-0/1 detector

n

Main ingredients

- **DCDC** converters
- Fewer layers
- Lighter materials
- Optimized service routing
- CO2 cooling

X/X

1.4

1.2

0.8

0.6

0.4

0.2

0

0

Inclined geometry

CMS Simulation

0.5

lη

Backend

DTC (= Data, Trigger and Control) boards readout and control modules

Based on ACTA standard

Bi-directional optical links

- 2.56 Gb/s DTC \rightarrow Module
 - clock, trigger, fast-commands and programming
- **5.12 or 10.24 Gb/s Module** \rightarrow **DTC** (depending occupancy/position in the detector)

L1 data (stubs) and DAQ data (detector payload)

- L1 data is relayed to track finder modules at 40 MHz
 - DAQ data (after L1 decision) read out at 750 kHz

Karlsruhe Institute of Tech

L1 track finding

Track finding in back-end will be based on FPGAs
L1 tracks will need to be found in ~5 μs

- Two stages:
 - Pattern recognition
 - Track fitting
- Approaches for pattern recognition:
 - Form tracklets from stubs in adjacent layers
 - Find track candidates through Hough-transform approach
- Approaches for track fitting
 - Kalman filter
 - χ^2 minimization
- Last step: duplicate removal

Poster: Level-1 track finding with an all-FPGA system at CMS for the HL-LHC, Kristian Hahn

L1 track finding – studies and prototypes

- Simulated events as inputs
- Both approaches produce compatible results
- Timing constraints met
 - Time to produce tracks $< \sim 5 \ \mu s$
 - CMS trigger latency in phase-2: 12.5 μs

Performance – Track Parameter Reconstruction

- Track parameter resolution of phase-2 tracker comparable or better than for phase-0/1 tracker
 - \rightarrow smaller cell size
 - \rightarrow less material

Performance – Tracking in the presence of pile-up

- High tracking efficiency also in presence of 140 or even 200 pile-up events
 - → around 90% efficiency for tracks with pT > 0.9 GeV with < ~2% fake rate

 \rightarrow dip around || ~ 1.2 being addressed in geometry optimization

Summary and Outlook

- Ambitious upgrade project underway for the CMS Outer Tracker for the HL-LHC running
- Designed to maintained or improve tracking performance compared to current system even in the presence of up to 200 pile-up events
- Deliver tracks above 2 GeV as L1 primitives at 40 MHz
- Several improvements result in the tracker being more performant and yet more light-weight compared to its predecessor

To reconstruct not just this....

....but also this

BACKUP

Mechanics

- TBPS: (inner barrel part)
 - Flat part: planks
 - Tilted part: rings
 - Detailed studies ongoing for optimal service routing
- TB2S: (outer barrel part)
 - "Ladder" support structures

 \rightarrow support structure to insert them similar to current strip tracker outer barrel

TEDD (endcap)

- Building blocks: DEE (half disk)
- Final disks are Double-Disks to be hermetic also with rectangular module geometry

Cooling

- Total power of the CMS Phase-2 outer tracker: 100 kW
- CMS Outer Tracker will use CO2 cooling
 - Low mass pipe work
 - 📕 Lighter liquid
 - High heat transfer
 - Environmentally friendly
- Already successfully used in LHCb, ATLAS IBL, CMS Phase-1 Pixel

Downside

- High operating pressure BUT
- Stored energy (pressure X volume) comparable to other refrigerants
- Several identical cooling units in service cavern
 - Redundancy (allow single cooling plants to be under maintenance or repair)
- Distribution
 - Transfer lines to experimental cavern
 - First manifolds in accessible locations on Experimental Cavern balconies
 - Further splitting to capillaries inside detector volume

Schematics of CO2 cooling (here from CMS Phase 1 pixel)

High Luminosity LHC

Integrated Particle Fluence

3000 fb⁻¹ at 14 TeV