The GeMSE Low-Background Facility for Meteorite and Material Screening Diego Ramírez García Albert-Ludwigs-Universität Freiburg Low Radioactivity Techniques 2019 May 20th, Jaca (Spain) ### Motivation - Material screening - Rare event searches (e.g., Dark Matter, Ovββ) require low-background detector components - Selection of suitable materials for the construction of XENONnT and DARWIN projects - Meteorite research - Identification of cosmogenic activated isotopes (e.g., ²²Na, ²⁷Al, ⁴⁴Ti) in meteorites allows for terrestrial age determination - Pairing of samples - Need for a non-destructive analysis of chemical composition - User-friendly remote control and analysis/simulations framework ### **GeMSE** Location FREBURG - Vue des Alpes underground laboratory (Switzerland) - 620 m.w.e. rock overburden - → 2000x reduction of cosmic muons - · Location in a car tunnel provides very easy access - · One-hour drive from Bern - → Short-lived isotopes from meteorites can be measured ### GeMSE Design - 24 x 24 x 35 cm³ sample cavity - HPGe read-out by 14-bit digital MCA (CAEN DT5781A) - 10 ns resolution - Saves pulse height and time stamp for each event - Scintillator panels as muon veto - Discard HPGe signals 10 μs after veto trigger - \rightarrow ~ 0.5 % dead time introduced - Multi-layer passive shielding - 8 cm of Cu-OFE (> 99.99 % purity) - 5 cm low activity Pb (7 Bq/kg ²¹⁰Pb) - 15 cm normal Pb (91 Bq/kg ²¹⁰Pb) - N₂ purged glovebox - Remove ²²²Rn and protection against dust ## GeMSE Design #### Canberra ultra-low background HPGe - · 2.2 kg Ge crystal - Standard coaxial, p type - U-style cryostat - · Low-background Cu housing # GeMSE Design - Initial background goal of 250 counts/day (100-2700 keV) - Location and shielding design optimized via GEANT4 simulations M. v. Sivers et al., AIP Conf. Proc. 1672, 120004 (2015), arXiv:1505.07015 - Initial background goal of 250 counts/day (100-2700 keV) - Location and shielding design optimized via GEANT4 simulations Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels 620 m.w.e. depth 3600 m.w.e. depth (@ LNGS) 100-2700 Chain/Isotope Count Rate (day^{-1}) **GeMSE** Gator **GeMPI** ⁵⁷Co (ext.) 1.6 ± 0.2 ⁵⁷Co (int.) 1.1 ± 0.2 65Zn 1.2 ± 0.2 60 Co 0.84 ± 0.15 0.5 ± 0.1 0.26 ± 0.06 60 Co 0.84 ± 0.15 0.5 ± 0.1 0.21 ± 0.05 137Cs < 0.03 0.3 ± 0.1 0.34 ± 0.16 ^{40}K 0.23 ± 0.10 0.5 ± 0.1 0.52 ± 0.07 ²³²Th/²¹²Ph 0.34 ± 0.17 < 0.5²³²Th/²⁰⁸Tl 0.17 ± 0.10 < 0.13 ²³²Th/²²⁸Ac < 0.14< 0.5²³²Th/²⁰⁸Tl 0.27 ± 0.08 0.2 ± 0.1 0.11 ± 0.03 238LJ/214Ph 0.67 ± 0.17 0.7 ± 0.3 < 0.14²³⁸U/²¹⁴Bi 0.51 ± 0.14 0.6 ± 0.2 < 0.15238LI/214Bi 1120 < 0.02 0.3 ± 0.1 ²³⁸U/²¹⁴Bi 1765 0.08 ± 0.06 0.14 ± 0.08 246 ± 2 integral 226 ± 1 M. v. Sivers et al., JINST 11 P12017 (2016), arXiv:1606.03983 41 ± 1 - Initial background goal of 250 counts/day (100-2700 keV) - Location and shielding design optimized via GEANT4 simulations - Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels - Expected decrease of cosmogenic lines - Initial background goal of 250 counts/day (100-2700 keV) - Location and shielding design optimized via GEANT4 simulations - Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels - Expected decrease of cosmogenic lines \rightarrow In agreement with measurement after 2.5 years! ### GeMSE Efficiency - Dead layer from Li-difussed n+ contact - Determined by MC matching - 81 keV / 356 keV peak ratio of 133 Ba \rightarrow 0.67 \pm 0.01 mm - CBSS2 source with certified activity \rightarrow 0.65 \pm 0.05 mm Active volume implemented in GeMSE GEANT4 framework for efficiency calculation M. v. Sivers et al., JINST 11 P12017 (2016), arXiv:1606.03983 ### GeMSE Remote Operation #### DOBERMAN Slow Control (v4): - Monitoring: - HV of HPGe detector - Leakage current of HPGe detector - Muon veto rate - Automatic LN₂ refill - N₂ flow inside glovebox - Temperature inside glovebox - ... - 100 % uptime - Configurable without restarting - Remotely accessible #### In addition, remote switch for: - HPGe DAQ - LN₂ refill #### P. Zappa et al., JINST 11 (2016) T09003, arXiv:1607.08189 \rightarrow Three to four weeks of autonomy \leftarrow (Analysis environment set up for non-physics users) #### . Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest XENONnT PMTs (Hamamatsu R11410) PTFE holders (background) 10-PMTs batch + PTFE holders - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest #### Using the timestamps of the hits: - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest #### CALIBRATED COUNTING RATE AFTER MV DEAD-TIME CORRECTION - . Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest GEANT4 branching ratio validation Gammas to be simulated separately - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest - GEANT4 branching ratio validation - Sample implementation - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest - GEANT4 branching ratio validation - Sample implementation - Complex 3D geometries can also be imported - Relevant to determine self-absorption of meteorites - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest #### SIMULATED DETECTOR EFFICIENCY A. Cadwell et al., Comput. Phys. Commun. 180 (2009) 2197,arXiv:0808.2552 - i. Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest - Analysis based on the Bayesian Analysis Toolkit - Uncertainty on detection efficiency as Gaussian prior - Background-only and signal+background fit in 5σ region Calculate Bayes Factor $$BF = \frac{P(B \mid data)}{P(S \mid data)}$$ - BF < 0.33: Calculate activity</p> - BF > 0.33: Calculate upper limit - . Measure your sample and background - ii. Get rid of Rn contamination in your data - iii. Derive energy calibration and resolution - iv. Perform efficiency simulations for your sample - v. Fit gamma peaks of interest #### (10 PMTs, 19 days) (10 PMTs, 21 days) | Isotope | Batch 1 [mBq/PMT] | Batch 2 [mBq/PMT] | |------------------------|--------------------------------|-------------------------------| | ²³⁸ U | < 5.0 | < 6.3 | | ²²⁸ Th | < 1.6 · 10-1 | $(1.1 \pm 0.4) \cdot 10^{-1}$ | | ²²⁶ Ra | (4.1 ± 0.9) · 10 ⁻¹ | $(2.4 \pm 0.9) \cdot 10^{-1}$ | | ²²⁸ Ra | $(2.5 \pm 1.4) \cdot 10^{-1}$ | < 0.4 | | ⁶⁰ Co | $(3.8 \pm 0.8) \cdot 10^{-1}$ | $(5.3 \pm 0.8) \cdot 10^{-1}$ | | ¹³⁷ Cs | < 6.0 · 10 ⁻² | < 5.0 · 10 ⁻² | | ⁴⁰ K | 5.5 ± 1.2 | 6.1 ± 1.7 | Results fit expectations from bulk materials' contamination E. Aprile et al. Eur. Phys. J. C (2015) 75: 546, arXiv:1503.07698 ## Summary - GeMSE operates under very stable conditions since November 2015 - Slow control allows for three to four weeks of autonomous activity - Foreseen improvements in LN₂ refill system and remote control - Reached background design goal in 2016 - Current rate of 167 ± 2 counts/day (100-2700 keV), from the decrease on the cosmogenic-activated component - Comparable to most sensitive screening facilities in the world - Flexible and user-friendly sample analysis chain - Precise efficiency simulations framework based on the GEANT4 toolkit - Able to process complex-shaped volumes - Participating in the XENONnT screening campaign - Essential role in the (non-invasive) verification and classification of claimed meteorite falls from various point in the planet