

The GeMSE Low-Background Facility for Meteorite and Material Screening

Diego Ramírez García Albert-Ludwigs-Universität Freiburg

Low Radioactivity Techniques 2019 May 20th, Jaca (Spain)

Motivation

- Material screening
 - Rare event searches (e.g., Dark Matter, Ovββ) require low-background detector components
 - Selection of suitable materials for the construction of XENONnT and DARWIN projects
- Meteorite research
 - Identification of cosmogenic activated isotopes (e.g., ²²Na, ²⁷Al, ⁴⁴Ti) in meteorites allows for terrestrial age determination
 - Pairing of samples
 - Need for a non-destructive analysis of chemical composition
 - User-friendly remote control and analysis/simulations framework

GeMSE Location

FREBURG

- Vue des Alpes underground laboratory (Switzerland)
 - 620 m.w.e. rock overburden
 - → 2000x reduction of cosmic muons

- · Location in a car tunnel provides very easy access
- · One-hour drive from Bern
 - → Short-lived isotopes from meteorites can be measured

GeMSE Design

- 24 x 24 x 35 cm³ sample cavity
- HPGe read-out by 14-bit digital MCA (CAEN DT5781A)
 - 10 ns resolution
 - Saves pulse height and time stamp for each event
- Scintillator panels as muon veto
 - Discard HPGe signals 10 μs after veto trigger
 - \rightarrow ~ 0.5 % dead time introduced
- Multi-layer passive shielding
 - 8 cm of Cu-OFE (> 99.99 % purity)
 - 5 cm low activity Pb (7 Bq/kg ²¹⁰Pb)
 - 15 cm normal Pb (91 Bq/kg ²¹⁰Pb)
- N₂ purged glovebox
 - Remove ²²²Rn and protection against dust

GeMSE Design

Canberra ultra-low background HPGe

- · 2.2 kg Ge crystal
- Standard coaxial, p type
- U-style cryostat
- · Low-background Cu housing

GeMSE Design

- Initial background goal of 250 counts/day (100-2700 keV)
- Location and shielding design optimized via GEANT4 simulations

M. v. Sivers et al., AIP Conf. Proc. 1672, 120004 (2015), arXiv:1505.07015

- Initial background goal of 250 counts/day (100-2700 keV)
- Location and shielding design optimized via GEANT4 simulations

Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels

620 m.w.e. depth 3600 m.w.e. depth (@ LNGS)

100-2700

Chain/Isotope Count Rate (day^{-1}) **GeMSE** Gator **GeMPI** ⁵⁷Co (ext.) 1.6 ± 0.2 ⁵⁷Co (int.) 1.1 ± 0.2 65Zn 1.2 ± 0.2 60 Co 0.84 ± 0.15 0.5 ± 0.1 0.26 ± 0.06 60 Co 0.84 ± 0.15 0.5 ± 0.1 0.21 ± 0.05 137Cs < 0.03 0.3 ± 0.1 0.34 ± 0.16 ^{40}K 0.23 ± 0.10 0.5 ± 0.1 0.52 ± 0.07 ²³²Th/²¹²Ph 0.34 ± 0.17 < 0.5²³²Th/²⁰⁸Tl 0.17 ± 0.10 < 0.13 ²³²Th/²²⁸Ac < 0.14< 0.5²³²Th/²⁰⁸Tl 0.27 ± 0.08 0.2 ± 0.1 0.11 ± 0.03 238LJ/214Ph 0.67 ± 0.17 0.7 ± 0.3 < 0.14²³⁸U/²¹⁴Bi 0.51 ± 0.14 0.6 ± 0.2 < 0.15238LI/214Bi 1120 < 0.02 0.3 ± 0.1 ²³⁸U/²¹⁴Bi 1765 0.08 ± 0.06 0.14 ± 0.08

 246 ± 2

integral

 226 ± 1

M. v. Sivers et al., JINST 11 P12017 (2016), arXiv:1606.03983

 41 ± 1

- Initial background goal of 250 counts/day (100-2700 keV)
- Location and shielding design optimized via GEANT4 simulations
- Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels
- Expected decrease of cosmogenic lines

- Initial background goal of 250 counts/day (100-2700 keV)
- Location and shielding design optimized via GEANT4 simulations
- Total reduction by a factor of $\sim 10^5$ with respect to above-ground levels
- Expected decrease of cosmogenic lines \rightarrow In agreement with measurement after 2.5 years!

GeMSE Efficiency

- Dead layer from Li-difussed n+ contact
- Determined by MC matching
 - 81 keV / 356 keV peak ratio of 133 Ba \rightarrow 0.67 \pm 0.01 mm
 - CBSS2 source with certified activity \rightarrow 0.65 \pm 0.05 mm

Active volume implemented in GeMSE GEANT4 framework for efficiency

calculation

M. v. Sivers et al., JINST 11 P12017 (2016), arXiv:1606.03983

GeMSE Remote Operation

DOBERMAN Slow Control (v4):

- Monitoring:
 - HV of HPGe detector
 - Leakage current of HPGe detector
 - Muon veto rate
 - Automatic LN₂ refill
 - N₂ flow inside glovebox
 - Temperature inside glovebox
 - ...
- 100 % uptime
- Configurable without restarting
- Remotely accessible

In addition, remote switch for:

- HPGe DAQ
- LN₂ refill

P. Zappa et al., JINST 11 (2016) T09003, arXiv:1607.08189

 \rightarrow Three to four weeks of autonomy \leftarrow

(Analysis environment set up for non-physics users)

. Measure your sample and background

- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

XENONnT PMTs (Hamamatsu R11410)

PTFE holders (background)

10-PMTs batch + PTFE holders

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

Using the timestamps of the hits:

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

CALIBRATED COUNTING RATE AFTER MV DEAD-TIME CORRECTION

- . Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

GEANT4 branching ratio validation

Gammas to be simulated separately

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

- GEANT4 branching ratio validation
- Sample implementation

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

- GEANT4 branching ratio validation
- Sample implementation
- Complex 3D geometries can also be imported
 - Relevant to determine self-absorption of meteorites

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

SIMULATED DETECTOR EFFICIENCY

A. Cadwell et al., Comput. Phys. Commun. 180 (2009) 2197,arXiv:0808.2552

- i. Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

- Analysis based on the Bayesian Analysis Toolkit
- Uncertainty on detection efficiency as Gaussian prior
- Background-only and signal+background fit in 5σ region

Calculate Bayes Factor

$$BF = \frac{P(B \mid data)}{P(S \mid data)}$$

- BF < 0.33: Calculate activity</p>
- BF > 0.33: Calculate upper limit

- . Measure your sample and background
- ii. Get rid of Rn contamination in your data
- iii. Derive energy calibration and resolution
- iv. Perform efficiency simulations for your sample
- v. Fit gamma peaks of interest

(10 PMTs, 19 days) (10 PMTs, 21 days)

Isotope	Batch 1 [mBq/PMT]	Batch 2 [mBq/PMT]
²³⁸ U	< 5.0	< 6.3
²²⁸ Th	< 1.6 · 10-1	$(1.1 \pm 0.4) \cdot 10^{-1}$
²²⁶ Ra	(4.1 ± 0.9) · 10 ⁻¹	$(2.4 \pm 0.9) \cdot 10^{-1}$
²²⁸ Ra	$(2.5 \pm 1.4) \cdot 10^{-1}$	< 0.4
⁶⁰ Co	$(3.8 \pm 0.8) \cdot 10^{-1}$	$(5.3 \pm 0.8) \cdot 10^{-1}$
¹³⁷ Cs	< 6.0 · 10 ⁻²	< 5.0 · 10 ⁻²
⁴⁰ K	5.5 ± 1.2	6.1 ± 1.7

Results fit expectations from bulk materials' contamination

E. Aprile et al. Eur. Phys. J. C (2015) 75: 546, arXiv:1503.07698

Summary

- GeMSE operates under very stable conditions since November 2015
- Slow control allows for three to four weeks of autonomous activity
 - Foreseen improvements in LN₂ refill system and remote control
- Reached background design goal in 2016
 - Current rate of 167 ± 2 counts/day (100-2700 keV), from the decrease on the cosmogenic-activated component
 - Comparable to most sensitive screening facilities in the world
- Flexible and user-friendly sample analysis chain
- Precise efficiency simulations framework based on the GEANT4 toolkit
 - Able to process complex-shaped volumes
- Participating in the XENONnT screening campaign
- Essential role in the (non-invasive) verification and classification of claimed meteorite falls from various point in the planet

