Tellurium Purification and Deployment in SNO+

Szymon Manecki, SNOLAB Research Scientist, LRT, May 20th, 2019

SNO+ Collaboration, Phys. Rev. D 99, 012012 (2019) SNO+ Collaboration, Phys. Rev. D 99, 032008 (2019)

SNO+ Physics Goals

- Neutrinoless Double Beta Decay
- Low Energy Solar Neutrinos
- Reactor Antineutrinos
- Geo-Neutrinos
- Supernova-v

$o\nu\beta\beta\\Search Requirements$

- Low backgrounds Good energy resolution Large amounts of isotope

ovββ Search Requirements

Te Scintillator

- 780 T Linear Alkylbenzene (LAB)
 + 2 g/L PPO (Primary Fluor)
 + 15 mg/L bisMSB (WS)
- Tellurium Butanediol (TeDiol) 0.5% Te in LAB
- DDA (stabilizing amine) o.4% in LAB

Te Scintillator

 LAB-soluble TeDiol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

- DDA purification
 - U/Th target at ~10⁻¹⁵g/g (expected reduction factor of 1000 from the assayed level has been easily reached with spiked distillation)
 - Expected reduction factors for Co/Na have been achieved, but clean handling post-distillation is going to be important

Te Scintillator

 LAB-soluble TeDiol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

- TeA purification
 - The target 8 tonnes of TeA have already been cooling down underground (50% for > 2 years and 50% for < 2 years)

TeA Purification

- The purification technique relies on solubility of TeA in water based on pH
 - Te(OH)₆ ↔ Te(OH)₅O⁻ + H⁺

in-soluble

soluble

- Insoluble contamination
 - Dissolve in water, and filter
- Soluble contamination
 - Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid

		C A TOP
Isotope	$t_{exp}=1$ yr	
²² Na	15309	- 1 / 1
²⁶ Al	0.048	
^{42}K	565	5444
^{44}Sc	102	- Protocological
^{46}Sc	43568	The second second
⁵⁶ Co	2629	
^{58}Co	25194	
⁶⁰ Co	6906	P
⁶⁸ Ga	37343	
82 Rb	18047	
⁸⁴ Rb	11850	
⁸⁸ Y	390620	
⁹⁰ Y	823	
¹⁰² Rh	276189	
102m Rh	133848	
¹⁰⁶ Rh	1534	
110m Ag	69643	
¹¹⁰ Ag	939	
^{124}Sb	3101138	
$^{126m}\mathrm{Sb}$	240	
¹²⁶ Sb	358996	

10kg pilot-scale

1 st Pass	2nd Pass	3 rd Pass
		P

Target (r.f. 10³): ²³⁸U: 1.3x10⁻¹⁵ g/g ²³²Th: 5x10⁻¹⁶g/g

Needed reduction for cosmogenics by: 10⁵-10⁶

TeA Fabrication & Cleaning

- All wet process lines and vessels constructed with plastic to suppress metals leaching
 - Polypropylene vessels designed and delivered by SeaStar
 - On-site contractors trained in clean PFA piping installation

TeA Fabrication & Cleaning

SeaStar process vessel leaching (with warm acid solution)

Results from ICP-MS assay of leachate (ppt)

	Soak 1 (2 days)		Soak 2 (4 days)		Soak 3 (4 days)	
	RXT	TRXT	RXT	TRXT	RXT	TRXT
U	1	0.2	<0.05	<0.05	<0.05	<0.05
Th	5	1	1.1	<0.1	<0.1	<0.1
Ca	2700	2000	380	180	<20	<20
Fe	5600	5000	220	170	17	37

Compare: goal of 0.1 ppt U and <0.05ppt Th in purified TeA. Other measured metals (relevant for cosmogenics) lower than Ca and Fe, <0.1 ppb goal.

Vessels meet our purity requirements! Further cleaning/leaching with nitric acid after installation will provide additional safety factor.

TeA Plant Construction

TeA Plant Outlook & Schedule

- The most critical components of the plant have been commissioned
 - Vacuum and process pumps, blowers, fans agitators and instrumentation
 - Process controls and operations programming is in an advanced stage
- Commissioning/cleaning with Nitric Acid
 - Summer, 2019
- Plant ready for Operation
 - Fall, 2019

TeDiol Plant Isometric Layout

TeDiol Fabrication & Cleaning

- PFA (PerFluoroAlkoxy) lined FRP (fiberglass-reinforced polymer) tanks for main process vessels
 - Flash chamber, batch tank & product tank
- PFA in-line heater
- PFA condenser
- PFA Centrifugal Pumps
- Nitrogen sparging system
- Stainless steel condensate tank

TeDiol Plant Construction

Feb-2018

May-COMPLETED 2019

TeDiol Outlook & Schedule

- The construction of the plant has been completed
 - Only minor tasks remain (heat insulation, labeling, filters etc)
 - Commissioning of the equipment has been initiated
- Acid cleaning & commissioning
 - Summer, 2019
- Plant ready for Operation
 - Fall, 2019

SNO+Te Phase

- T^{ov}_{1/2} > 2.1 X 10²⁶ yrs
- m_{ββ} > 45 meV_(IBM-2)

SNO+Te Phase

With 0.5% Te loading

T^{ov}_{1/2} > 2.1 × 10²⁶ yrs

m_{ββ} > 45 meV_(IBM-2)

Thank You

