Noble gas purification for LZ and other rare event searches

Eric Miller

LRT – Jaca, Spain

May 20 2019

LZ Detector

Z position from S1 - S2 timing X-Y positions from light pattern

Particle

Reject gammas by S2/S1 ratio Expect > 99.5% rejection

Image by CH Faham (Brown)

LUX-ZEPLIN (LZ) detector

7.0 T active LXe

5.6T fiducial

Instrumented Xe skin detector

50 kV cathode high voltage

> 17 tonnes **Gd-LS Outer Detector**

Backgrounds uniform in LXe

- Solar neutrinos
- Contamination of the xenon by:
 - Non-noble gases, eg ³H
 - Long-lived noble gases, eg ⁸⁵Kr, ³⁹Ar
 - Short-lived noble gases, eg ²²²Rn

Backgrounds uniform in LXe

- Solar neutrinos
- Contamination of the xenon by:
 - Non-noble gases, eg ³H
 Removed by Getter
 - Long-lived noble gases, eg ⁸⁵Kr, ³⁹Ar
 Removed before experiment start
 - Short-lived noble gases, eg ²²²Rn
 Mitigated by materials screening
 Removed while experiment is running

LZ Circulation

Circulation Getter

- LZ's full 10 tonnes purified every 2.3 days
- Saes hot zirconium getter removes electronegative impurities
 - O₂, N₂, etc.
 - Critical for detector performance
- Getter also removes ³H
 - Eliminates this background

LZ – Radon Control

- Radon emanates from materials in contact with Xe
- Screening
 - Around 100 materials/components screened for LZ
 - Warm end of PMT cables potentially significant

LZ – Radon Control

- Radon emanates from materials in contact with Xe
- Screening
 - Around 100 materials/components screened for LZ
 - Warm end of PMT cables potentially significant
- In-line removal system
 - Impractical to purify 500 SLPM circulation
 - Practical to purify problematic areas

LZ – Radon Control

- Radon emanates from materials in contact with Xe
- Screening
 - Around 100 materials/components screened for LZ
 - Warm end of PMT cables potentially significant
- In-line removal system
 - Impractical to purify 500 SLPM circulation
 - Practical to purify problematic areas
- Projected Rn level:
 - $<2 \mu Bq/kg$

LZ Circulation

LZ – In-line radon removal

- Remove radon from subset of circulation flow
 - 0.1% of Xe flow, but significant Rn contribution
- Strategy: charcoal chromatography
 - Radon passes through charcoal slower than xenon
 - Design system to trap radon for many half-lives (3.8 days)
- Radon Removal system in development at the University of Michigan:

LZ – In-line radon removal

- Critical that charcoal remove more radon than it produces!
 - Identify low-emanation; high adsorption charcoal

Saratech

CarboAct

Shirasagi

Charcoal	Density (g/cm³)	Surface area (m²/g)	Spec. activity (mBq/kg)	Price (\$/kg)
Shirasagi	0.45	1,240	101 ± 8	27
CarboAct	0.28	1,000	0.23 ± 0.19	15,000
Saratech	0.60	1,340	1.71 ± 0.20	35
Saratach (HNO ₃)	0.60	1,340	0.51 ± 0.09	135

Any worry about cosmic-ray activation of xenon?

- Cosmic ray interactions produce radioactive byproducts in xenon cylinders at the Earth's surface
- Many of these are solids, and will not enter experiment
- ³H will be removed by getter
- ¹²⁷Xe
 - 36-day half-life reduces impact
 - Production rate too low to be significant background
- 133Xe
 - 5.2 day half-life reduces impact
- We have the luxury of purifying Xe at the surface

Kr Removal with Chromatography

- Remove via gas charcoal chromatography (with helium carrier gas)
 - Kr has a faster flow rate through activated charcoal than Xe

LZ Kr Removal - Chromatography

LZ Kr Removal - Chromatography

LZ Kr Removal - Recovery

LZ Kr Removal - Storage

LZ – Krypton Removal

- Employ 2 columns to clean xenon twice as fast!
- LZ system to process 16 kg slugs every two hours
- Plan to purify 10 tonnes over 6 months
- R&D system reduced Kr content to 0.06 ppt
- LZ system designed to achieve 0.015 ppt (15 ppq)
 - Subdominant to solar neutrinos
 - LZ requires < 0.3 ppt
 - Currently commissioning system

Centrifuge Purification - EXO

- Enriched Xenon Observatory (EXO-200) searched for neutrinoless double-beta decay in ¹³⁶Xe
- Centrifuges used to enrich heavy isotopes of Xe
 - 136Xe fraction increased from 8.9% to 80.6%
- Other lighter elements also removed by this process
 - Including ⁸⁵Kr and ³⁹Ar
- Kr concentration reduced to 16.3 ± 1.9 ppt

The EXO-200 detector, part I: detector design and construction, EXO Collaboration. Journal of Instrumentation 7 (05), P05010, 2012

Eric Miller

Cryogenic Distillation: Krypton

- Employed by XMASS, XENON100, XENON1T, PANDAX...
- Distillation tower for XENON1T
- Operates at -98 C;
- Vapor pressure of Kr is 10.8x greater than of Xe
- High-Kr gas extracted from the top
- Low-Kr liquid extracted from bottom
- Achieved lowest reported Kr level:< 17 ppq

Removing krypton from xenon by cryogenic distillation to the ppq level, XENON Collaboration, Eur. Phys. J. C (2017) 77: 275

Cryogenic Distillation: Radon

- Demonstrated on XENON100
 - Installed in series with circulation system
- Operates at -96 C;
- Low-Rn gas extracted from the top
- Rn decays in liquid at bottom

See also talk by Hardy Simgen later this session!

Online 222Rn removal by cryogenic distillation in the XENON100 experiment, Eur. Phys. J. C (2017) 77: 358

Kr purity achieved

Experiment	Technique	Purity Achieved (ppt g/g)
Panda X	Distillation	<30
XENON1T	Distillation	<0.017
XMASS	Distillation	2.1 ± 0.7
EXO-200	Centrifuge	16.3 ± 1.9
LUX	Chromatography	3.5
LZ R&D	Chromatography	0.06

Thanks for listening!

Bonus Slides

WIMP backgrounds summary

5.6 tonnes x 1000 days; ~1.5 to ~6.5 keV

	ER	NR
Background Source		
		(cts)
Detector Components	9	0.07
Surface Contamination	40	0.39
Laboratory and Cosmogenics	5	0.06
Xenon Contaminants	819	0
222Rn	681	0
220Rn	111	0
natKr (0.015 ppt g/g)	24	0
natAr (0.45 ppb g/g)	3	0
Physics	322	0.51
136Xe 2vββ	67	0
Solar neutrinos (pp+7Be+13N)	255	0
Diffuse supernova neutrinos	0	0.05
Atmospheric neutrinos	0	0.46
Total	1195	1.03
with 99.5% ER discrim., 50% NR eff.	5.97	0.51

Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ)

Dark Matter Experiment, LZ Collaboration,

arXiv:1802.06039, 2018 Eric Miller - 2019 LRT