



# Production of low background scintillating crystals for underground experiments in Korea

**Moo-Hyun Lee** 

Center for underground Physics, Institute for Basic Science, Korea

2019. 05. 21

LRT 2019 @ Palacio de Congresos, Jaca, Spain

#### Yangyang underground laboratory (Y2L) & CUP

(Upper Dam) Yang Yang Pumped Storage Power Plant

> **Center for Underground Physics IBS (Institute for Basic Science)**

> > Since

1000m

(Power Plant)

700m

Since 2003 2014 A5: COSINE, AMoRE HPGe array, Alpha

A6: KIMS-CsI & HPGe 양양양수발전소

COSINE-100 (WIMP Dark Matter) AMoRE (0νββ Decay)

Pyongyang

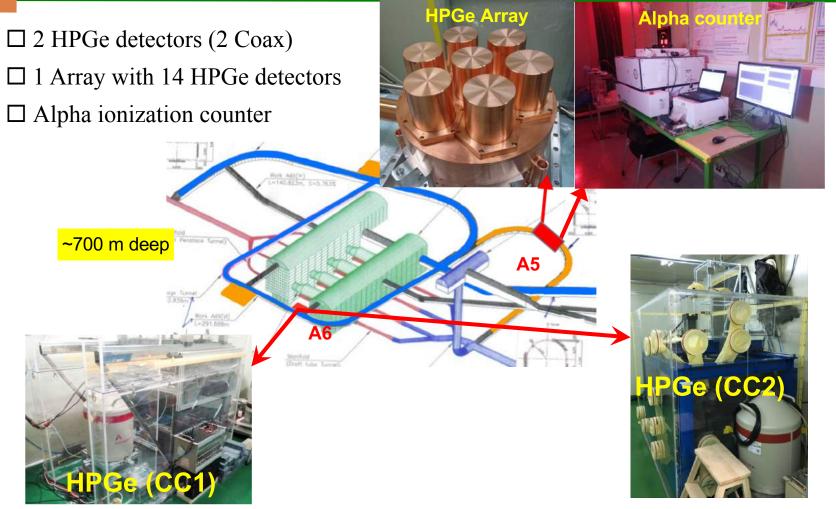
2.5 hour

**CUP/IBS** 

Daejeon

(Lower Dam)

Seoul driving


Y2L

3.3 hour driving

Minimum depth : 700 m / Access to the lab by car (~2km)

## Low Background Measurements at Y2L





Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

3

# ICP-MS Lab at IBS HQ, Daejeon



- □ Agilent 7900, the highest sensitivity single MS system in 2015 when purchased.
- □ Under operation since Oct. 2015. (Moved to IBS HQ in spring 2018)
- $\Box$  In a cleanroom nominally designed as class 1000, >150 air changes/hour.
- A Millipore DI system, in-house acid distillation with a 3 linear meters of chemical hood space.
- □ Dissolve sample in liquid form, uptake in argon (Ar) gas stream, ionize gas, extract into mass spectrometer, measure trace contaminants.
- □ Confirmation of purification methods by measuring isotopic or chemical tracers.
- □ Confidence in systematics at ultra-trace levels is not easily achievable through outsourced measurements.

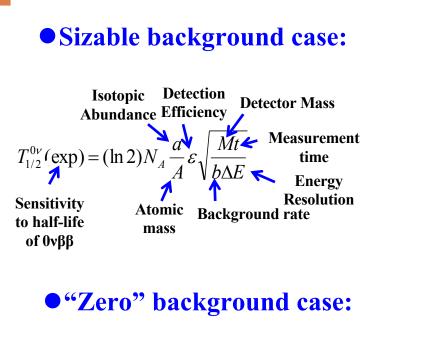


Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)



# **Experiments at the Y2L**

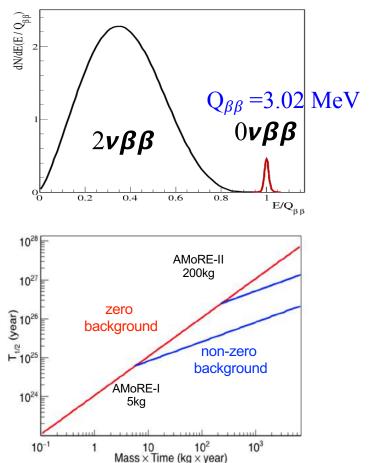



New rooms in A5 tunnel for COSINE (38 m<sup>2</sup>) KIMS-Na AMORE A5 and AMoRE (43 m<sup>2</sup>) constructed in late 2014. Communicatio room Currently the two experiments are running separated two main labs Gas together with an array of 14 HPGe. Rn free air room system system Electrical room mrk Adit(N) =140.823m, 5=5.7635 Lab space : July 2014 A5 est Penstock Tunne Ge array December 2014 A6AMoRE MS-Csl. HPGe COSINE

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

5

## AMoRE Experiment: 0v β β decay search



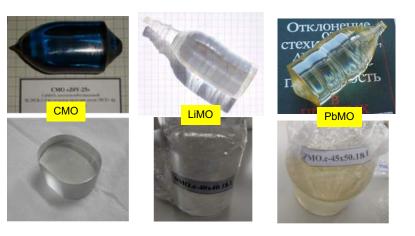



6

When b is ~ O(1),  

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_A \frac{a}{A} \varepsilon M t$$




AMoRE is aiming for zero background.

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

# **AMoRE Parameters**



- $\Box \quad Crystals: {}^{40}Ca^{100}MoO_4(CMO) \text{ or } XMO$ 
  - (X: Li, Na, or Pb)
  - $\square \quad {}^{100}\text{Mo enriched:} > 95\%$
  - $^{48}$ Ca depleted: < 0.001% (N.A. of  $^{48}$ Ca:0.187%)
- □ Low temperature detector: 10 30 mK
- Energy resolution:  $\sim 5 \text{ keV} @ 3 \text{MeV}$
- Excellent PSD



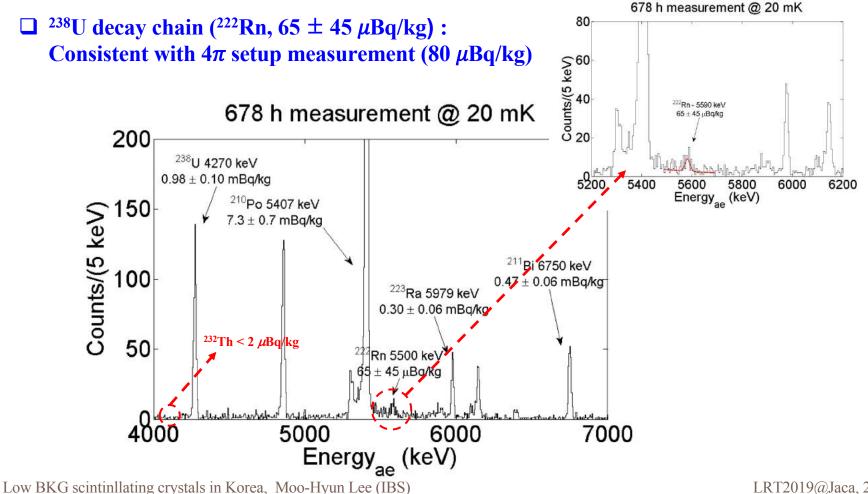
#### The AMoRE configuration and plan

|                                          | Pilot             | Phase I                   | Phase II                   |
|------------------------------------------|-------------------|---------------------------|----------------------------|
| Mass (Crystal)                           | 1.9 kg CMO        | 6 kg (CMO + LMO)          | 200 kg XMO (X: Li, Na, Pb) |
| BKG [keV ·kg· year]-1                    | <10-2             | < <b>10</b> <sup>-3</sup> | <10-4                      |
| T <sub>1/2</sub> Sensitivity [years]     | ~10 <sup>24</sup> | ~10 <sup>25</sup>         | ~8 ×10 <sup>26</sup>       |
| <m<sub>ββ &gt; Sensitivity [meV]</m<sub> | 400 - 700         | 100 - 300                 | 13 - 25                    |
| Location                                 | Y2L (             | (700 m depth)             | Yemi Lab (1100m depth)     |
| Schedule                                 | 2015 - 8          | 2019 - 2021               | 2021 -                     |

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

# Identify critical radioactivity

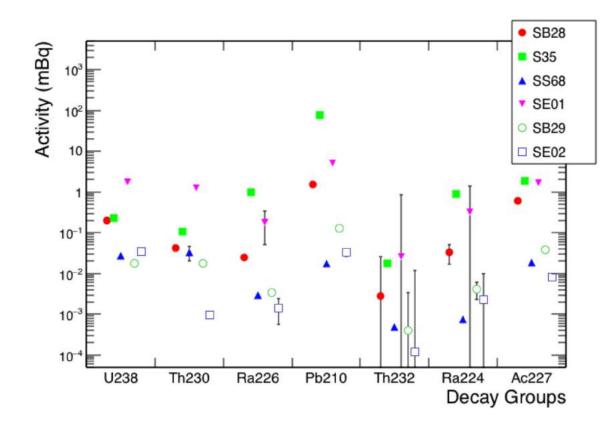



- □ Go through all known nuclei decaying  $\beta$  with  $Q_{\beta\beta} > 3.02$ MeV in NNDC database. □ <sup>110m</sup>Ag (3.0105 MeV) doesn't contribute for Mo experiment.
- Cosmogenic excitation is negligible after 1 year at underground.
- □ Only Th and U natural radio-activities are critical for Q> 3.02MeV.  $\rightarrow$  Great advantage to run high Q-value nuclei !

| Element           | Decay | T <sub>1/2</sub>                 | Q (MeV) | Mother                             | Chain             | Comment         |
|-------------------|-------|----------------------------------|---------|------------------------------------|-------------------|-----------------|
| <sup>26</sup> Al  | EC    | $7.4 \mathrm{x} 10^5 \mathrm{y}$ | 4.004   | N/A                                |                   | Long lifetime   |
| <sup>56</sup> Co  | EC    | 0.21y                            | 4.567   | N/A                                |                   | Short lifetime  |
| <sup>88</sup> Y   | EC    | 0.29y                            | 3.623   | <sup>88</sup> Zr (0.23 y)          |                   | Short lifetime  |
| <sup>106</sup> Rh | B-    | 30s                              | 4.004   | $^{106}$ Ru(1.02y)                 |                   |                 |
| <sup>126</sup> Sb | B-    | 12.5d                            | 3.670   | $^{126}$ Sn(2.3x10 <sup>5</sup> y) |                   | Long lifetime   |
| <sup>146</sup> Eu | EC    | 4.61d                            | 3.878   | <sup>146</sup> Gd (0.13 y)         |                   | Short lifetime  |
| <sup>208</sup> Tl | B-    | 3.05m                            | 4.999   | <sup>228</sup> Th (1.91 y)         | <sup>232</sup> Th | Main            |
| <sup>209</sup> Tl | B-    | 2.16m                            | 3.970   | <sup>233</sup> U(159200y)          | <sup>233</sup> U  | 2.1% branching  |
| <sup>210</sup> Tl | B-    | 1.3m                             | 5.482   | <sup>226</sup> Ra(1600y)           | <sup>238</sup> U  | 0.02% branching |
| <sup>214</sup> Bi | B-    | 19.9m                            | 3.269   | <sup>226</sup> Ra(1600y)           | <sup>238</sup> U  | Main            |

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

#### **Internal alpha background of SB28 (AMoRE-Pilot)**






#### **AMoRE-Pilot: Internal Activities from α rates**







- Most of the <sup>210</sup>Pb are bulk contribution.
- Internal backgrounds between crystals differ more than an order, even two orders.

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

## **AMoRE-I CMO crystals (FOMOS)**





- 3 years for procurement.
- LY, resolution, transmittance, RT background measurements done.
- #3-9 to be installed at AMoRE-I together with #1-2.

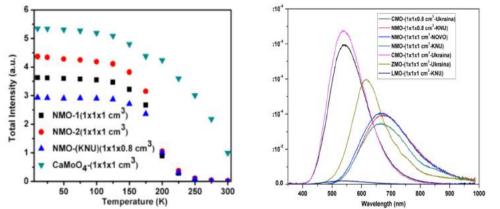
#### **AMoRE-I CMO: RT measurement**



| [µB/kg]        | <sup>227</sup> Ac ( <sup>215</sup> Po)<br>( <sup>235</sup> U family) | <sup>226</sup> Ra ( <sup>214</sup> Po)<br>( <sup>238</sup> U family) | <sup>228</sup> Th ( <sup>216</sup> Po)<br>( <sup>232</sup> Th family) | Alpha | Relative<br>Light Yield |
|----------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------|-------------------------|
| Qualification* | <500                                                                 | <100                                                                 | <50                                                                   | <1000 |                         |
| SE1            | $60 \pm 8$                                                           | $40 \pm 6$                                                           | $50\pm 6$                                                             |       | 0.43                    |
| SE2            | $90 \pm 10$                                                          | $20 \pm 3$                                                           | < 100                                                                 |       | 0.58                    |
| SE3            | $30 \pm 6$                                                           | $6\pm3$                                                              | $30 \pm 6$                                                            | 28000 | 0.75                    |
| SE4            | $30 \pm 6$                                                           | $10 \pm 3$                                                           | $10 \pm 3$                                                            | 3200  | 0.60                    |
| SE5            | $40 \pm 6$                                                           | $10 \pm 3$                                                           | $10 \pm 3$                                                            |       | 0.70                    |
| SE6            | $35 \pm 6$                                                           | $100 \pm 10$                                                         | $70 \pm 10$                                                           |       | 0.62                    |
| SE7            | $80 \pm 10$                                                          | $30 \pm 5$                                                           | 65 ± 10                                                               |       | 0.60                    |
| SE8            | $40 \pm 6$                                                           | $20 \pm 5$                                                           | $40 \pm 6$                                                            |       | 0.55                    |
| SE9            | $0\pm 6$                                                             | <11                                                                  | $50\pm 6$                                                             |       | 0.66                    |

#### \*Expect to have 10<sup>-3</sup> counts/keV/kg/y at AMoRE-I

J.Y. Lee et al., IEEE TNS vol. 65 No. 8 (2018) 2041


Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

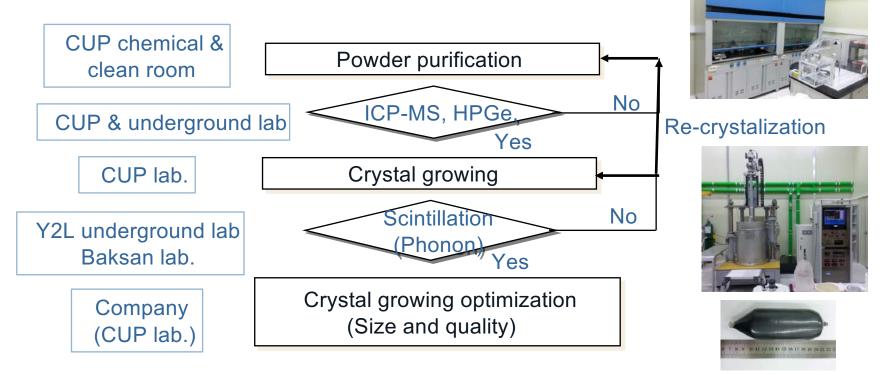
#### **Decision on crystals for AMoRE-II**



- CMO (CaMoO<sub>4</sub>) is a very good crystal with the largest light output, but CMO has a disadvantage that we need <sup>48</sup>Ca depleted isotopes, expensive.
- CUPID-Mo group decided to use LMO (Li<sub>2</sub>MoO<sub>4</sub>), and we are working on LMO, PMO (PbMoO<sub>4</sub>), & NMO (Na<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub>), crystals.

|           | Emission | LightYiel | d (@10K) | Decay time    | <b>1</b> • / | Мо       |
|-----------|----------|-----------|----------|---------------|--------------|----------|
| Crystal   | (nm)     | 280nm     | X-ray    | ( <i>µ</i> s) | density      | Fraction |
| CMO(Ukra) | 540      | 100       | 100      | 240           | 4.34         | 0.49     |
| ZMO(NIIC) | 614      | 63        | 35       |               | 4.37         | 0.436    |
| LMO(KTI)  | 535      | 1         | 5        | 23            | 3.03         | 0.562    |
| PMO(NIIC) | 592      | 11        | 105      | 20            | 6.95         | 0.269    |
| NMO(NIIC) | 663      | 75        | 9        | 750           | 3.62         | 0.558    |




Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

CMO (CaMoO<sub>4</sub>)
 LMO (Li<sub>2</sub>MoO<sub>4</sub>)
 NMO (Na<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub>)
 PMO (PbMoO<sub>4</sub>)

Pandey et al., IEEE Trans. Nucl. Sci. (2018) Pandey et al., Journal of Crystal Growth 480 (2017) 62-66 J.Y. Lee et al., IEEE Trans. Nucl. Sci. (2018)



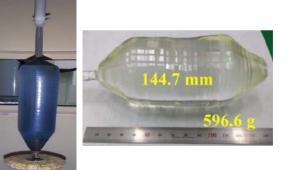
Ultra-low background powder R&D is difficult and need quick feedback (Purification and measurement of 10  $\mu$ Bq/kg <sup>238</sup>U, <sup>232</sup>Th & total radioactivity of alpha < 1 mBq)



Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

14

#### Low background Crystal growing facility at CUP



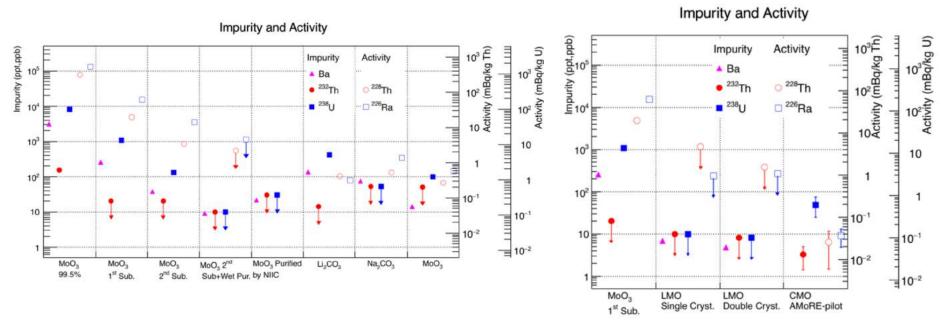

□ Main goal

15

- □ CaMoO<sub>4</sub>, Li<sub>2</sub>MoO<sub>4</sub>, Na<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub> crystals growing R&D for AMoRE-II
- Other DBD or DM crystal R&D
- Deep purification of CaCO<sub>3</sub> and MoO<sub>3</sub> powders ( < 50 µBq/kg for U,Th chain) (Details in Olga Gileva's talk)
- Crystal growing equipment:
   3 Czochralski, 2 Kyropoulous, 1 Bridgman crystal growers.






CMO & LMO crystals by CUP

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

### **AMoRE-II: Purification of XMO crystals**



# Ba is a good indicator for Ra since they are in the same family. We have a good progress toward AMoRE-II crystals.



#### Details in Olga Gileva's talk

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

LRT2019@Jaca, 2019-05-21

16

# Molybdate crystals grown at CUP



- Successful in growing molybdate crystals. Growing time  $\sim 1$  week.
- The purity of the grown crystals are measured by ICP-MS  $\rightarrow$  Promising results
- Enriched LMO crystals are grown at NIIC and CUP for LT measurements.



17

#### **Unpurified Mo and Ca powders**



Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

#### **Purified Mo and Li powders**



CZ02-L1702

CZ02-L1705

(Sublimed MoO<sub>3</sub>)



CZ02-L1703 (Sublimed MoO<sub>3</sub>)



C702-11704 (Sublimed MoO<sub>3</sub>)



CZ02-L1707 (Sublimed MoO<sub>3</sub>)



CZ02-L1706

(Sublimed MoO<sub>3</sub>)

CZ02-L1801 (Double crystallization)

**Purified Mo and Na powder** 



255.6 g, 100 mm (L)

cut and polished



| Element    |                | Al        | Κ              | Ba           | Sr                       | Pb    | Th    | U     |
|------------|----------------|-----------|----------------|--------------|--------------------------|-------|-------|-------|
| No.        | sample         | (ppb)     | (ppb)          | (ppb)        | (ppt)                    | (ppt) | (ppt) | (ppt) |
|            | Sin            | ngle crys | tallized natu  | ral LMO (w   | /o purificatio           | on)   |       |       |
| CMD 113    | L1701-1        | 48.1      | 347.3          | 5.445        | <15                      | <300  | <15   | <16   |
| CMD 113    | L1701-2        | 21.7      | 449.2          | 5.401        | 75                       | <300  | <15   | <16   |
|            | Sin            | ngle crys | tallized natu  | ral LMO (M   | loO <sub>3</sub> sublime | ed)   |       |       |
| CMD163.1   | CZ02-L1706-T   | <11       | 38             | 7.579        | <50                      | <100  | <8    | <8    |
| CMD163.2   | CZ02-L1706-B   | <11       | 83             | 9.617        | <50                      | <100  | <8    | <8    |
|            | Do             | uble crys | stallized natu | ural LMO (N  | 10O <sub>3</sub> sublim  | ed)   |       |       |
| CMD191.1   | CZ02-L1801-T   | <11       | <30            | 4.744        | <50                      | <100  | <8    | <8    |
| CMD191.2   | CZ02-L1801-B   | <11       | <30            | 5.814        | <50                      | <100  | <8    | <8    |
|            |                | En        | riched LMO     | (w/o purific | cation)                  |       |       |       |
| CMD00236.2 | CZ02-L1803E-T  | 1437      | <40            | 6.82         | <31                      | <225  | <6    | <6    |
| CMD00236.3 | CZ02-L1803E-B  | 1484      | <40            | 7.07         | <31                      | <225  | <6    | <6    |
| CMD00236.1 | CZ02-L1803E-RM | 3824      | 249            | 28.58        | 4110                     | 12290 | 71    | 472   |

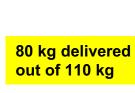
Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

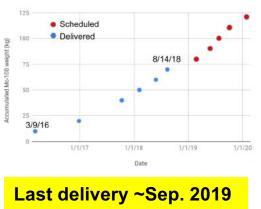
18

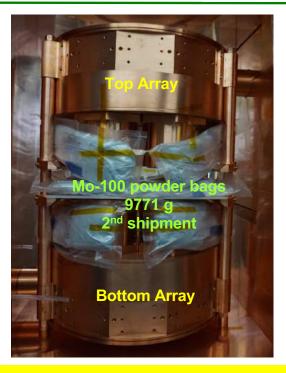


| No.                                    | Sample | K, ppb | Al, ppb | Cr, ppb | Fe, ppb | Sr, ppb | Ba,<br>ppb | Pb, ppb | Th,<br>ppb | U, ppb |
|----------------------------------------|--------|--------|---------|---------|---------|---------|------------|---------|------------|--------|
| Initial<br>MoO <sub>3</sub><br>99.95%  |        |        |         |         |         | 6.6     | 1366       | 16.0    | 0.3        | 4.1    |
| Initial<br>CaCO <sub>3</sub><br>99.95% |        |        |         |         |         | 162936  | 3081       | 449     | 50         | 1429   |
|                                        | Тор    | 439    | <60     | 24      | 1475    | 59413   | 116        | 6.6     | 1.2        | 9.3    |
| <b>CMD92</b><br>(CZ01-1604)            | Middle | 513    | <60     | 18      | 1756    | 62315   | 134        | 6.5     | 1.3        | 9.9    |
| (CZ01-1004)                            | Bottom | 449    | <60     | 13      | 2051    | 69216   | 156        | 5.4     | 2.1        | 10.4   |

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)


19





#### **Mo-100 powder (ECP) for AMoRE-II**

| Contract Date<br>(weight) | Lot#     | Delivery@Y2L |          |
|---------------------------|----------|--------------|----------|
| 2015 (10 kg)              | #1(3172) | 3/9/16       |          |
|                           | #2(3328) |              |          |
| 2016 (10 kg)              | 3434     | 12/28/16     |          |
| 2016 (10 kg)              | 3497     | 10/12/17     | 00       |
| 2016 (10 kg)              | 3535     | 10/12/11     | 80<br>00 |
| 2017 (10 kg)              | 3589     | 2/7/18       |          |
| 2017 (10 kg)              | 3649     | 5/29/18      |          |
| 2017 (10 kg)              | 3675     | 8/14/18      |          |
| 2017 (10 kg)              | 3741     | 2/13/19      | J        |









HPGe Array meas. (9/13 – 11/28/2017)

- $^{226}$ Ra chain ( $^{238}$ U):1.6 ± 0.3 mBq/kg
- $^{228}$ Th chain ( $^{232}$ Th): 244 ± 50  $\mu$ Bq/kg (first measurement)
- <sup>88</sup>Y: 33  $\pm$  8  $\mu$ Bq/kg (cosmogenic)

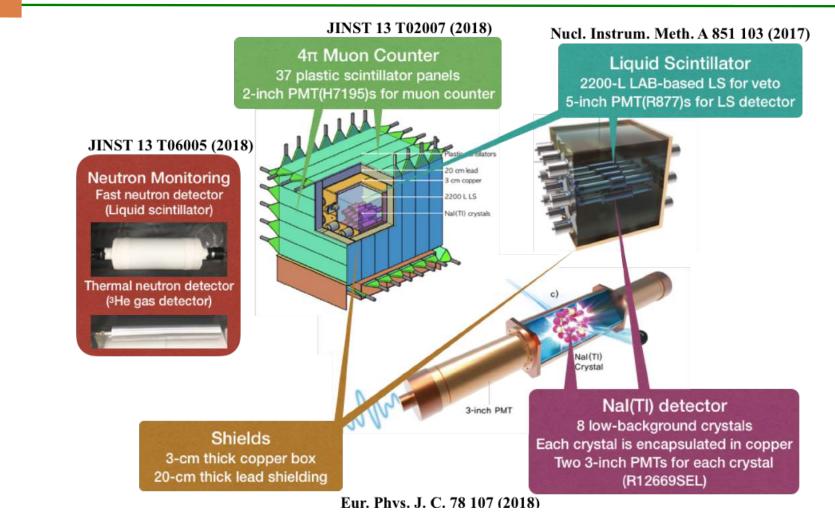
Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

### **AMoRE** sensitivity for neutrino mass

Seven commissioning runs in AMoRE-pilot have been completed in December 2018.

21


- □ AMoRE-I is currently being prepared to start from fall this year.
- AMoRE-II preparation is ongoing in parallel together with the Yemilab construction.
  - Nuclear Matrix Element: QRPA (Faessler et al., 2012)
  - AMoRE-I: 5 kg and 5 years
  - AMoRE-II: 200 kg and 5 years
  - It was assumed as "zero-background".





#### **COSINE-100 instrument for WIMP DM search**





Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

22

# **COSINE-100 NaI(Tl) crystal detector**

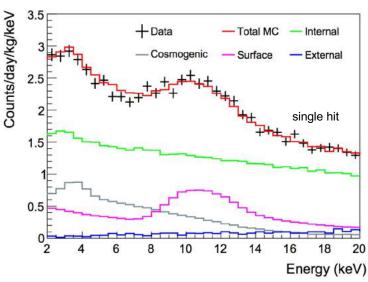
- 8 ultra low-background NaI(Tl) crystals with a mass of 106 kg in total
   U/Th/K levels are less than DAMA, but total alphas (<sup>210</sup>Pb) are higher
  - than DAMA.
- □ Higher light yield (15 p.e/keV) than DAMA
- □ Can make the threshold lower easily
- □ Total background level is 2-3 times that of DAMA.

| Crystal   | Mass<br>(kg) | Powder   | Alpha rate<br>(mBq/kg) | <sup>40</sup> K<br>(ppb) | <sup>238</sup> U<br>(ppt) | <sup>232</sup> Th<br>(ppt) | Light yield<br>(p.e./keV) |
|-----------|--------------|----------|------------------------|--------------------------|---------------------------|----------------------------|---------------------------|
| Crystal 1 | 8.3          | AS-B     | 3.20 ± 0.08            | 43.4 ± 13.7              | < 0.02                    | 1.31 ± 0.35                | 14.88 ± 1.49              |
| Crystal 2 | 9.2          | AS-C     | $2.06 \pm 0.06$        | 82.7 ± 12.7              | < 0.12                    | < 0.63                     | 14.61 ± 1.45              |
| Crystal 3 | 9.2          | AS-WS II | 0.76 ± 0.02            | 41.1 ± 6.8               | < 0.04                    | 0.44 ± 0.19                | 15.50 ± 1.64              |
| Crystal 4 | 18.0         | AS-WS II | 0.74 ± 0.02            | 39.5 ± 8.3               |                           | < 0.3                      | 14.86 ± 1.50              |
| Crystal 5 | 18.0         | AS-C     | 2.06 ± 0.05            | 86.8 ± 10.8              |                           | 2.35 ± 0.31                | 7.33 ± 0.70               |
| Crystal 6 | 12.5         | AS-WSII  | 1.52 ± 0.04            | 12.2 ± 4.5               | < 0.018                   | 0.56 ± 0.19                | 14.56 ± 1.45              |
| Crystal 7 | 12.5         | AS-WSII  | 1.54 ± 0.04            | 18.8 ± 5.3               |                           | < 0.6                      | 13.97 ± 1.41              |
| Crystal 8 | 18.3         | AS-C     | 2.05 ± 0.05            | 56.15 ± 8.1              |                           | < 1.4                      | 3.50 ± 0.33               |
| DAMA      |              |          | < 0.5                  | < 20                     | 0.7 - 10                  | 0.5 – 7.5                  | 5.5 – 7.5                 |

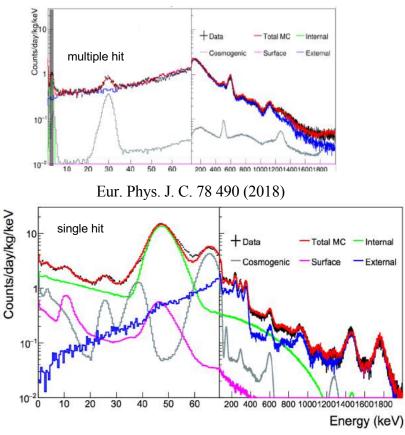
Eur. Phys. J. C. 78 107 (2018)








# **COSINE-100 Background Modeling**




- Detector simulation based on GEANT4 well reproduces measured background spectra (4 channels for each crystal, single: 6 - 2000 keV, multiple: 2 - 2000 keV).
- □ Main background in low energy region
  - Contamination of crystals from <sup>40</sup>K/U/Th
  - Cosmogenic activation (mostly <sup>3</sup>H)
  - <sup>210</sup>Pb on crystal surface

24



Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)



# **Next Phase of COSINE(-200)**



Extremely pure crystal development

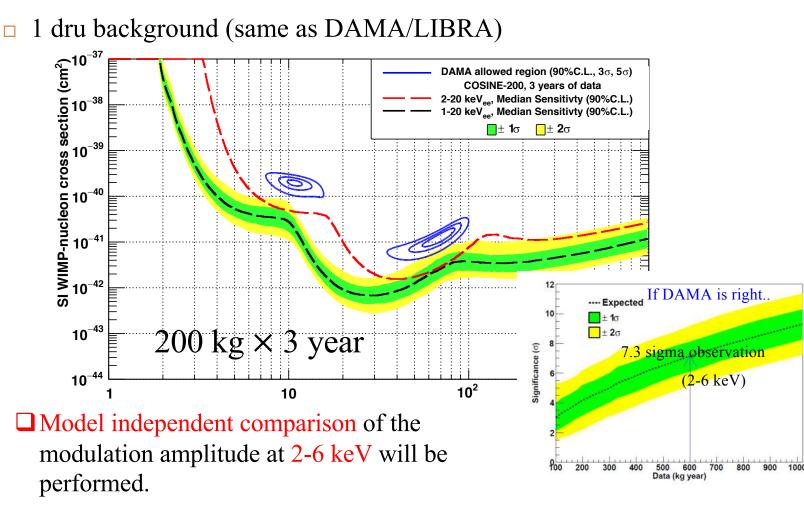
25

- Background level less than that of DAMA/LIBRA (1 dru)
- In-house development for the entire processes
  - Purification of NaI powder
  - Full size crystal grower
- R&D of NaI(Tl) crystal at low temperature
   Current COSINE-100 shield designed to accommodate sixteen of 12.5 kg crystals (200 kg).



Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)




#### Crystal grade NaI [99.99(5) %]

| Material          | Initial<br>[ppb] | Purified<br>[ppb] |
|-------------------|------------------|-------------------|
| <sup>39</sup> K   | 45.1             | 6.0               |
| <sup>208</sup> Pb | 3.3              | 0.8               |
| <sup>232</sup> Th | < 0.1            | < 0.1             |
| <sup>238</sup> U  | < 0.1            | < 0.1             |
|                   | 1 1 1 01         | 217 1220 (2010    |

J. Rad. Nucl. Chem. 317 1329 (2018)

# **COSINE-200** sensitivity (Modulation)

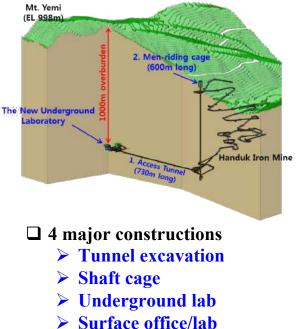




Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

26

#### Yemilab: A new underground lab in Handeok mine



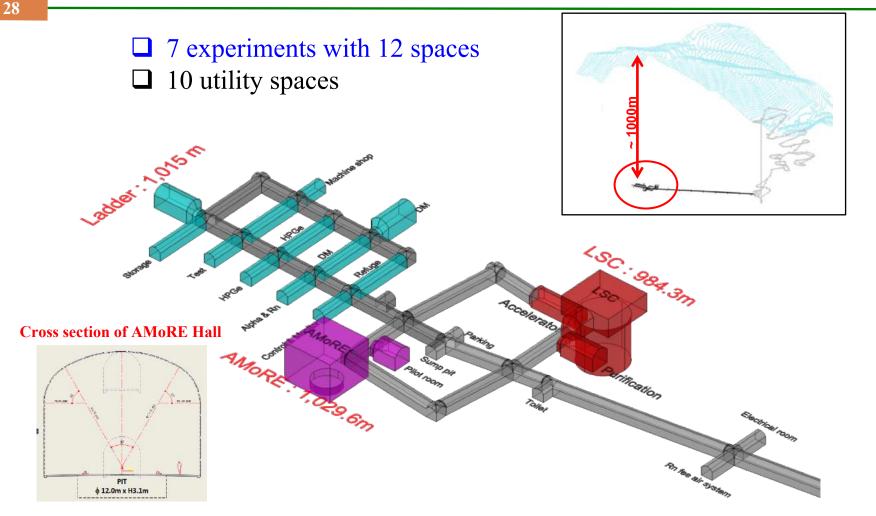

The only operating iron ore mine in Korea.
 A 600 m long 2<sup>nd</sup> shaft already constructed.
 0.7 million tons of iron ores extracted per year

### ARF is now Yemilab.



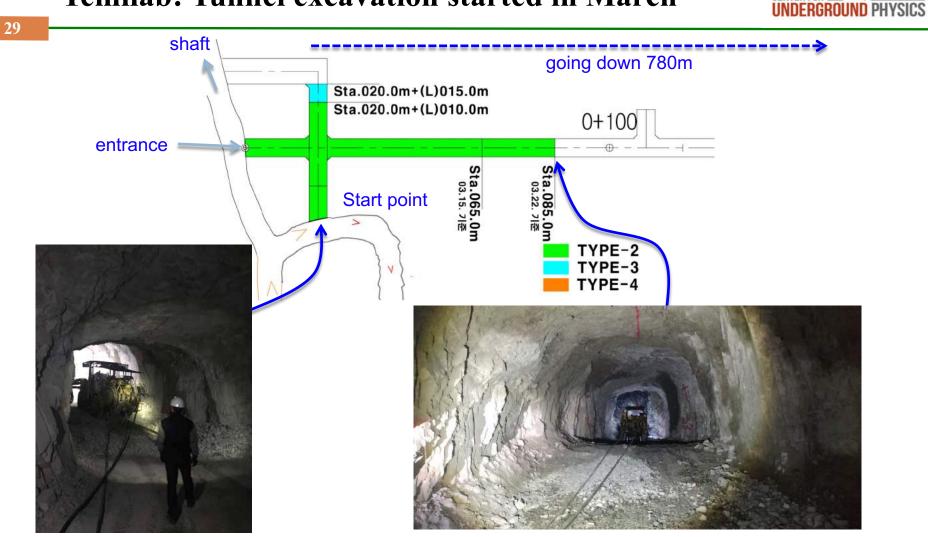
27






Handeok has two shafts for mining 1<sup>st</sup> shaft ~ 300 m deep 2<sup>nd</sup> shaft 600 m deep (NEW)

Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)


## Yemilab: Underground Laboratories





Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

#### Yemilab: Tunnel excavation started in March



Low BKG scintinllating crystals in Korea, Moo-Hyun Lee (IBS)

ibs

CENTER FOR

# Summary

- □ CUP has two major rare process experiments, AMoRE and COSINE, running in the Y2L.
- □ CUP has been running ultra-low background measurements facility in the Y2L and IBS HQ to screen raw materials for the detector components (i.e., crystals) from 2014.
- □ Background levels of AMoRE-Pilot CMO crystals measured both in RT and LT are consistent each other.
- □ Background levels of nine FOMOS CMO crystals measured in RT are confirmed that they meet the requirement of 10<sup>-3</sup> ckky in AMoRE-I.
- $\Box$  AMoRE-II with 200 kg of crystals requires even lower background level of 10<sup>-4</sup> ckky.
- Purification and growing of molybdate crystals at the CUP started from 2016 aiming for the AMoRE-II and in a good progress.
- □ COSINE-100 has 106 kg of NaI(Tl) crystals with similar or lower background levels in <sup>40</sup>K/U/Th than those of the DAMA except <sup>210</sup>Pb. It has 2-3 more background than that of the DAMA in low energy.
- □ COSINE's next phase is going to use ultra-pure NaI(Tl) crystals with ~200 kg mas to confirm/dispute the DAMA's annual modulation in model-independent way.
- □ Purification and crystal growing of NaI(Tl) started at the CUP from 2017 and in a good progress.
- A new underground lab to accommodate the AMoRE-II, called Yemilab, has started its tunnel excavation from March to be completed by the end of this year.

30