

Conceptual design of the COSINUS experiment using cryogenic Nal detectors for direct dark matter search

A. Fuss for the COSINUS Collaboration

INSTITUTE OF HIGH ENERGY PHYSICS

Outline

Motivation for COSINUS

Detectors, Crystals and Prototypes

Conceptual shielding design

+ Background Simulation

Outline

Motivation for COSINUS

Detectors, Crystals and Prototypes

Conceptual shielding design

+ Background Simulation

DAMA/LIBRA Results

motion of the Earth causes relative modulation of velocity

→ annual variation in the rate

1 year expected period:

expected phase: cosine peaking June 2nd

Total exposure: 2.17 tonne years (phase 1 + 2)

 $> 11.9 \sigma$ **Statistics:**

 0.9987 ± 0.0008 years Period:

25th May +/- 5 days Phase:

Modulation Amplitude: $0.0096 \pm 0.0011 \, \text{cpd/kg/keV}$

Convincing non-DM explanation

Bernabei, R. et al. Universe 4 (2018) no.11, 116

DAMA/LIBRA Islands in the Dark Matter Landscape

- Inconsistency with null-results reported by most other direct dark matter experiments
- Question: target dependency of the cross-section?
- Idea: Use same target material with low-temperature detection technology

Null results shown as: 90% C.L. upper limits on the spinindependent DM particle-nucleon cross section

DAMA/LIBRA: 3σ allowed parameter space

C. Savage et al., Journal of Cosmology and Astroparticle Physics 2009.04 (Apr. 2009), p. 010

Outline

Motivation for COSINUS

Detectors, Crystals and Prototypes

Conceptual shielding design

+ Background Simulation

COSINUS Detector Design

Nal Target Crystal

- Scintillator
- Multi-element target
- Mass: ~ 30 − 200 g
- Hygroscopic

Carrier Crystal

- Carries the thermometer (TES)
- Glue/oil as interface and link for phonons

Light absorber

- Beaker-shaped HP silicon
- Fully active veto to reject surface backgrounds

Two-channel readout

• Discrimination between nuclear recoils and β/γ -events

2nd Prototype Detector

8.26 keV: energy threshold for Nal

- First measurement of a Nal crystals at cryogenic temperature
- Nal energy threshold is $(8.26 \pm 0.02 \text{ (stat.)})$ keV
- Carrier events identified by pulse shape

COSINUS R&D

1st PROTOTYPE (2016)

1st measurement of a Nal as cryogenic calorimeter

linear relation between light output and deposited energy

NaI threshold: 10 keV

3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017)

2nd PROTOTYPE (2016/17)

successful test of complete COSINUS detector design

energy resolution at zero energy: 15 eV

NaI threshold: 8.3 keV

13 % detected in light

Schäffner, K. et al. J Low Temp Phys 193 (2018) no.5-6, 1174-1181

3rd PROTOTYPE (2017)

changed interface to thin layer of silicon oil

commissioning of: in-house electronics and DAQ from MIB

Nal threshold: 6.5 keV

4th → 12th PROTOTYPE (2017-19)

test of new batch of NaI/NaI(TI) crystals from SICCAS

test of new TES-concept for the NaI crystal

Work ongoing!

Performance goal: 1 keV

Performance goal: 4 %

Nal Crystal Production

- Collaboration with I. Dafinei from INFN, Roma 1
- Yong Zhu from SICCAS joined the COSINUS collaboration
- Different batches of crystals tested:
 - ➤ Nal / Nal(Tl) grown from SICCAS powder (3 g 30 g crystals)
 - > Two 3-inch Nal crystals grown from Astrograde-powder at SICCAS
 - Very promising radiopurity (ICP-MS analysis):
 - → 5-9 ppb of K at crystals' nose and 22-35 ppb at the tail
 - → comparable or even higher purity than DAMA/LIBRA (~ 13 ppb)
 - > NaI(TI) with different amount of thallium dopant

Outline

Motivation for COSINUS

Detectors, Crystals and Prototypes

Conceptual shielding design

+ Background Simulation

Shielding Structure -> Geant4 Simulations

- Initial Idea:
 - → Water tank + inner shielding (made of Pb, Cu, PE)
- Simple Geant4 geometry implemented: concentric cylindrical volumes made of respective materials
- Background estimation with simulation
 - → Testing different shielding thicknesses
 - → No realistic detector design and arrangement was considered

 Ambient neutrons/gammas (origin: outside setup, mostly rock)

- Ambient neutrons/gammas (origin: outside setup, mostly rock)
- "Radiogenic" neutrons/gammas (origin: materials in setup)

- Ambient neutrons/gammas (origin: outside setup, mostly rock)
- "Radiogenic" neutrons/gammas (origin: materials in setup)
- Cosmogenic neutrons (origin: muon interactions)

Estimating the Size of the Water Tank

Constraints:

- 1. Reduce ambient neutron/gamma flux below the neutron/gamma flux due to inavoidable radioactive contaminations of the inner shielding materials (i.e. below the 'radiogenic' flux)
- 2. Muons (and their secondaries) should on average travel far enough through the water to create enough Cerenkov light to have an efficient veto

Ambient Neutrons at LNGS through H₂0

H₂O

Spectrum by H. Wulandari

Adapted from Wulandari, H. et al. Astropart. Phys. 22 (2004)

Integrated Flux above 500 keV: $\sim 7.9 \cdot 10^{-7}$ n cm⁻² s⁻¹

Flux in energy range 1 - 500 keV: $\sim 6.5 \cdot 10^{-6}$ n cm⁻² s⁻¹

→ Ambient neutron background negligible! No constraint for water tank thickness!

Ambient Gammas

Malczewski, D. et al. J. Radioanal. Nucl. Chem. (2013) 295:749-754

Total ambient flux ~0.23 cm⁻² s⁻¹

Ambient Gammas through water only:

O(10⁻⁶ cm⁻² s⁻¹) reach the detector volume after 3 m water

e.g.: 3 m water + 8 cm Cu:
ambient gamma flux is reduced to
~ 2.2 · 10⁻⁸ cm⁻² s⁻¹

 H_2O

Radiogenic Gammas

Contamination levels assumed for Cu and PE:

		<u> </u>
U-238:	65	μBq/kg
Th-232:	2	μBq/kg
K-40:	23	μBq/kg
Co-60:	2	μBq/kg
Cs-137:	< 2	μBq/kg

U-238:	3800	μBq/kg
Th-232:	140	μBq/kg
K-40:	700	μBq/kg
Co-60:	< 100	μBq/kg
Cs-137:	60	μBq/kg

E. Aprile et al., Eur. Phys. J. C77.12 (2017), p. 890

Total gamma flux due to Cu contamination on inner surface: $^{\sim}$ 10⁻⁶ cm⁻² s⁻¹ Total gamma flux due to PE contamination on inner surface: $^{\sim}$ 10⁻⁵ cm⁻² s⁻¹

C. Alduinoet al., JINST 11.07 (2016), P07009

Conclusion of simulation:

The gamma flux reaching the detector volume is about an order of magnitude higher when using PE compared to not using PE as an innermost shield.

3 m of water → reduce the ambient gamma flux to (or below) the level of the intrinsic flux. With a thin Cu shield, the ambient flux is definitely reduced below the intrinsic flux.

Radiogenic Neutrons

• Contamination levels used as input to SOURCES4A(C) code: (very radiopure reference materials have been selected)

	# . 0 1.
[mBq/kg] $[mBq/kg]$ $[mBq/kg]$	$[\text{cm}^{-3} \text{ s}^{-1}]$
Steel < 0.02 - < 0.1	$\boxed{42} \qquad 3.041 \times 10^{-12}$
Pb < 0.01 - < 0.07	$\boxed{42} \qquad 1.249 \times 10^{-13}$
Cu < 0.065 $ < 0.002$	[43] 6.609×10^{-13}
PE < 3.8 < 0.37 < 0.14	$[44] 9.369 \times 10^{-12}$

[42] D. R. Artusa et al., Eur. Phys. J. C74 (2014), p. 3096

[43] C. Alduinoet al., JINST 11.07 (2016), P07009

[44] E. Aprile et al., Eur. Phys. J. C77.12 (2017), p. 890

• SOURCES4A(C) output (neutron yield + spectrum) is used as input for Geant4 simualtion

Conclusion of simulation:

- → Avoiding PE as an innermost shield reduces the radiogenic neutron background
- → Less material (thin inner shield) leads to less sources for radiogenic neutrons

Cosmogenic Neutrons

1) Muon propagation to LNGS laboratory using **MUSUN simulation**:

Conclusion of simulation:

If we avoid PE close to the detectors, we will also **omit using Pb to minimize neutron production**.

Background budget and goal

- Our preferred optimal shielding design omits using Pb and PE, and solely consists of a water tank of 7 m diameter and height + 8 cm Cu shielding
- Gamma-background can be discriminated via two-channel readout
- Dangerous Background: neutrons
- Goal: background-free experiment, i.e. < 1 count kg⁻¹ yr⁻¹ in signal region
 - → No exact count estimation possible with simple simulation setup
 - → Estimation yields O(1 count kg⁻¹ yr⁻¹) for cosmogenic neutrons and O(10⁻² count kg⁻¹ yr⁻¹) for radiogenic neutrons
 - → Cosmogenic neutron background is ~ 2 orders higher than radiogenic neutron background without veto
 - → need for an active muon veto

Geant4 Simulation – Tracking Cerenkov Light in the

Water Tank

Storing the energy, hit positions and hit times of each photon

Cerenkov light cone created when e.g. a cosmic muon traverses the water

Hit Patterns on Tank Walls (Reflective Foil)

- Distinguish: "Muon Events" (= muon (+ secondaries) travelling through water tank)
 "Shower Events" (= only secondary particles travel through water tank)
- Only considering "dangerous" events, in which a neutron reaches the inner shielding

Tagging Efficiencies

Characteristics(size, quantum efficiency, collection efficiency, etc.) of Hamamatsu 8-inch PMTs were used

Different **PMT arrangements** were tested, e.g.:

Conclusion

- COSINUS has access to very radiopure Nal crystals (~ 10 ppb K)
- Operating Nal as a cryogenic detector works and provides particle discrimination via two-channel readout
- Background simulations have been made in order to design a dedicated shielding setup for the experiment, reaching the background goal
 - ➤ The preferred optimal solution uses a water tank of 7 m diameter and height in combination with an inner shield solely made of 8 cm Cu
 - > The water tank will be used as an active muon veto

Thank you for your attention!

Additional Slides

(Extra Material)

Two Phases: COSINUS 1π and 2π

COSINUS 1π : Initial Phase

- 1st measurement with 10 modules for 100 kg days
- Setup planned for 25 modules for 1000 kg days

Goal: confirm or rule out nuclear origin of DAMA signal

COSINUS 2π

Increased target mass, upgraded facility

Goal: modulation search

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild, JCAP 1805 (2018) no.05, 074