

Background characterization of the SABRE experiment

Giulia D'Imperio* on behalf of the SABRE collaboration *INFN Roma 1

Low Radioactivity Techniques 2019
Laboratorio Subterráneo de Canfranc (LSC), Spain 21/05/2019

Dark matter search with SABRE

- Low recoil energy 1-100 keV
- Differential rate of the order of **1 count/day/kg/keV** (cpd/kg/keV)
- Expected rate in an Earth-based detector is modulated
- Small modulation fraction $S_m/S_0 = O(\text{"few }\%)$

$$R = S_0 + S_m \cos(\frac{2\pi}{T}(t - t_0))$$

Sodium-iodide with Active Background REjection

1. Development of ultra-high purity NaI(TI) crystals

- High purity Nal powder from Sigma Aldrich (now Merck)
- Clean crystal growth method developed by Princeton (PU) and RMD company

2. Low energy threshold

High QE Hamamatsu PMTs directly coupled to the crystal

3. Passive shielding + active veto

Unprecedented background rejection and sensitivity with a NaI(TI) experiment

4. Two identical detectors in northern and southern hemispheres

- seasonal backgrounds have opposite phase in northern and southern hemispheres
- dark matter signal has same phase

The Proof-of-Principle (PoP)

Layout:

- 1 NaI(TI) crystal of ~5 kg
- Crystal and PMTs coupled directly with optical grease and sealed into a OFHC copper enclosure
- Active veto:
 - Cylindrical vessel (\varnothing x h) = (1.3 m x 1.5 m)
 - PC+PPO (3g/l) scintillator (mass \approx 2 ton)
 - o 10 Hamamatsu R5912-100 PMTs
- External shielding: combination of lead, polyethylene and water, sealed and flushed with nitrogen

Goals:

- Test active veto performance
- Fully characterize the intrinsic and cosmogenic backgrounds

Status of the setup at LNGS (1/2)

The PoP setup in the **Hall C** at **LNGS** is complete

- vessel cleaned, lumirror reflector
- veto PMTs mounted and tested
- vessel placed inside the passive shielding
- all connections tested (cables for signal and HV, tubes and valves for fluid handling)

Status of the setup at LNGS (2/2)

- alignment of crystal insertion system done
- crystal Nal-31 already @LNGS
- Nal-33 ready for shipping by boat, will arrive in few weeks at LNGS
- → Ready to start commissioning in **summer 2019**

Radioactivity of the setup

SABRE goal: achieve background < 1 cpd/kg/keV and threshold of 1 keV

The most important sources of background are:

- radioactive contaminations in the **crystals**:
 - o **intrinsic**: ⁴⁰K, ⁸⁷Rb, ²³²Th, ²³⁸U, ²¹⁰Pb out of equilibrium
 - long lived cosmogenics, in particular ³H and ²²Na
- radioactive contaminations in the materials close to the crystals (wrapping, PMTs, enclosure): ²³⁸U and ²³²Th decay chains, ⁴⁰K, ⁶⁰Co

Simulation of radioactive decays in all the setup materials:

- input concentration of isotopes measured with **ICP-MS** or γ activity with **HPGe**:
 - Nal powder and crystals measured by SABRE
 - measurements of other materials available in literature
- calculations of cosmogenic activation with ACTIVIA software,
 1 year exposure at sea level and 10 hours flight from US to Italy
- final background after 6 months underground

Simulation of the setup radioactivity

- GEANT4 based code with detailed geometry implementation
 - Crystal
 - Crystal PMTs: quartz window + body + feedthrough
 - **Enclosure**: wrapping, copper enclosure and small components inside
 - Crystal Insertion System (CIS): copper tube, steel bar
 - Veto: steel vessel + liquid scintillator + 10 veto PMTs
 - Shielding: water + polyethylene + steel + lead (only passive)

Crystal intrinsic radioactivity

Input for radioactivity from ICP-MS on test crystal and powder

Isotope	Activity [mBq/kg]	
⁴⁰ K	0.31	_ [1,2] → 10 pp
²³⁸ U	$< 1.2 \cdot 10^{-2}$	[1] → <1 ppt
²³² Th	$< 4.1 \cdot 10^{-3}$	[i] → <i ppt<="" td=""></i>
⁸⁷ Rb	$< 8.9 \cdot 10^{-2}$	[2] → <0.1 p
²¹⁰ Pb	$< 3.0 \cdot 10^{-2}$	→ assumed
⁸⁵ Kr	$< 1.0 \cdot 10^{-2}$	counting

[1,2] → 10 ppb from ICP-MS measurement on first test crystal

[1] → <1 ppt from ICP-MS limits on Astrograde powder

[2] → <0.1 ppb from ICP-MS limit on Astrograde powder

→ assumed limit from DAMA, can be measured only with direct counting

```
[1] PNNL (Arnquist, I.J. et al. Methods Phys. Res., Sect. A, 2017. 851)
[2] Seastar
```

- Very low content and U, Th and K in the Astrograde powder
- Purification method and segregation in crystal growth works well with K and Rb → long R&D by Princeton University and RMD
 (see talk by Burkhant Suerfu this morning)
- ²¹⁰Pb can be introduced later in cutting/polishing of grown crystal
 non vetable contribution

Crystal intrinsic background

Background in ROI: 2-6 keV

Isotope	Rate, veto OFF [cpd/kg/keV]	Rate, veto ON [cpd/kg/keV]
	Intrinsic	
⁸⁷ Rb	$6.1 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$
⁴⁰ K	$2.5 \cdot 10^{-1}$	$4.0\cdot 10^{-2}$
²³⁸ U	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
²¹⁰ Pb	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
⁸⁵ Kr	$1.9 \cdot 10^{-3}$	$1.9\cdot 10^{-3}$
²³² Th	$1.9 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$
Tot intrinsic	$3.5\cdot 10^{-1}$	$1.4\cdot 10^{-1}$

- actual value of ²¹⁰Pb in SABRE crystal will be measured with direct counting
- 1 μBq/kg of ²¹⁰Pb
 - → background 0.67 ·10⁻³ cpd/kg/keV
- assumed 30 µBq/kg (DAMA upper limit)
 - → background 2.0 ·10⁻² cpd/kg/keV

Veto on, threshold 100 keV

Crystal intrinsic background in ROI **0.14 cpd/kg/keV**

Cosmogenic activation

ACTIVIA Simulation software http://universityofwarwick.github.io/ACTIVIA/

- Uses semi-empirical formulae from Silberberg and Tsao to calculate the isotope production cross section
- Production rate depends on the activation cross section σ and the cosmic rays flux ϕ

$$R \propto \int \phi_x(E) \sigma_x(E) dE$$
 [nuclei/kg day]

- Assumptions on crystal exposure:
 - 1 year of exposure at sea level
 - + 10 hours flight from US (crystal production in Boston/Princeton) to Italy
 - 6 months underground

Tritium activation

- Long-lived (4503 days) pure β⁻ decaying isotope with very low Q-value (18.6 keV)
- active veto not effective

Activation rate on Nal → 26 nuclei/kg day

- From simulations, 1 µBq/kg of ³H in the crystal
 → 8·10⁻³ cpd/kg/keV
- Assuming 1 year@sea level + 10h flight:
 18 μBq/kg → 0.14 cpd/kg/keV

The calculations from the ANAIS group give a tritium production rate (independent on height) of about a factor 4 higher than ACTIVIA's

J.Amarè et al. Astropart. Phys. 97, 96 (2018)

→ To have the same activation level of simulations we need to limit the exposure at sea level to a few months and avoid transportation by flight

Crystal activation in flight

- Assumptions on crystal exposure:
 - 1 year of exposure at sea level
 - o **10 hours flight** from US (crystal production in Boston/Princeton) to Italy
 - 1 week by boat does not contribute w.r.t. 1 year@sea level

Isotope	Half life (days)	1 year sea level (mBq/kg)	1y@sea + 10h plane (mBq/kg)	Ratio plane+1y@sea / 1y@sea
³ H	4500	0.011	0.018	1.6
²² Na	951	0.076	0.12	1.6
¹¹³ Sn	115	0.045	0.096	2.1
^{121m} Te	154	0.24	0.50	2.1
^{123m} Te	120	0.14	0.31	2.2
^{125m} Te	58	0.21	0.69	3.2
^{127m} Te	109	0.22	0.54	2.4
125	59	0.59	1.92	3.2
126	13	0.38	4.14	10.1

Transportation of crystals by boat can **reduce cosmogenic background of ~40%**

Crystal cosmogenic backgrounds

Calculation with **ACTIVIA** and assumptions:

- 1 year of exposure at sea level
- + 10 hours flight from US (crystal production in Boston/Princeton) to Italy
- 6 months underground

ROI: 2-6 keV

Isotope	Rate, veto OFF [cpd/kg/keV]	Rate, veto ON [cpd/kg/keV]
	Cosmogenic	
³ H	$1.4 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$
¹²¹ Te	$2.0 \cdot 10^{-1}$	$2.6 \cdot 10^{-2}$
¹¹³ Sn	$1.2 \cdot 10^{-2}$	$2.2\cdot 10^{-3}$
²² Na	$2.1 \cdot 10^{-2}$	$1.5\cdot 10^{-3}$
¹²⁵ I	$4.4 \cdot 10^{-4}$	$4.4\cdot 10^{-4}$
¹²⁹ I	$1.9 \cdot 10^{-4}$	$1.9\cdot 10^{-4}$
¹²⁶ I	$1.8\cdot 10^{-4}$	$1.2\cdot 10^{-4}$
^{127m} Te	$6.4 \cdot 10^{-5}$	$6.4 \cdot 10^{-5}$
^{121<i>m</i>} Te	$7.1 \cdot 10^{-5}$	$3.7 \cdot 10^{-5}$
^{123<i>m</i>} Te	$1.9 \cdot 10^{-5}$	$1.3\cdot 10^{-5}$
^{125m} Te	$3.8\cdot 10^{-6}$	$3.7\cdot 10^{-6}$
Tot Cosmogenic (180 days)	$3.8\cdot 10^{-1}$	$1.7\cdot 10^{-1}$

The most important cosmogenic background is ³H, but can be **significantly** reduced avoiding flight and minimizing exposure at sea level

Total internal backgrounds

Summary of the total background from the experimental setup.

Veto on, threshold 100 keV 6 months underground

ROI: 2-6 keV

	Rate, veto OFF [cpd/kg/keV]	Rate, veto ON [cpd/kg/keV]	
Crystal Crystal (³ H) Crystal cosmogenic Crystal PMTs Enclosure Veto CIS Total	$3.5 \cdot 10^{-1}$ $1.4 \cdot 10^{-1}$ $2.4 \cdot 10^{-1}$ $4.3 \cdot 10^{-2}$ $9.5 \cdot 10^{-3}$ $3.0 \cdot 10^{-2}$ $3.7 \cdot 10^{-3}$ $8.2 \cdot 10^{-1}$	$ \begin{array}{c} 1.5 \cdot 10^{-1} \\ 1.4 \cdot 10^{-1} \\ 3.1 \cdot 10^{-2} \\ 3.5 \cdot 10^{-2} \\ 3.6 \cdot 10^{-3} \\ 5.7 \cdot 10^{-4} \\ 4.6 \cdot 10^{-4} \\ 3.6 \cdot 10^{-1} \end{array} $	crystal → 89% other setup → 11%

- Veto rejection is ~56% (heavily affected by non vetoable contribution from ³H)
- Total background 0.36 cpd/kg/keV
- If confirmed with data, lowest background with NaI(TI) detector

Astroparticle Physics

<u>Volume 106</u>, March 2019, Pages 1-9

Radioactivity of surroundings: external y

External background in **Hall B** and **Hall C** of LNGS has been measured with a standard grade Nal(TI) crystal.

→ Use Monte Carlo to deconvolve the spectrum and obtain U, Th and K contamination in the rocks 905-16 Nal Scintillation detector, 4x4x16 in. crystal, 3.5 in. tube

$$f(E) = c_K \times f_K(E) + c_U \times f_U(E) + c_{Th} \times f_{Th}(E)$$

External y background

Simulation of U, Th and K in the LNGS rocks and propagate in SABRE geometry

	Hall B [ppm]	Hall C [ppm]
К	7068 ± 90	12780 ± 70
U	0.56 ± 0.01	0.966 ± 0.004
Th	0.54 ± 0.01	0.840 ± 0.006

In agreement with values in literature (H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322)

	Rate in [2-6] keV [cpd/kg/keV]
Gamma Hall B	< 4.0 10 ⁻³ (99% CL)
Gamma Hall C	< 5.4 10 ⁻³ (99% CL)
Total internal	0.36

Gamma external background including shielding and veto effect is **O(100) lower** than internal backgrounds

- Preliminary study on radiogenic neutrons show that the contribution is $^{\sim}10^{-4}$ cpd/kg/keV in the signal region
- Next step: study muon background

Conclusions

Status of the SABRE experiment:

- Crystal Nal-31 arrived at LNGS in April 2019
- Transportation by plane for Nal-31 from PU to LNGS was safe and fast
- Crystal Nal-33 (best crystal, grown with optimal procedure developed by Princeton/RMD ready for shipping by boat
- Ready to start the **data taking** of the PoP in **summer 2019**
- South laboratory (SUPL) excavation will start in 2019
 - → laboratory ready in 2020

Eur. Phys. J. C (2019) 79: 363

If Monte Carlo prediction confirmed with data:

- lowest background among Nal(TI) based detectors for dark matter (DM)
- double location in opposite hemispheres will help to discriminate annual modulation signal from DM interactions wrt. seasonal effects
- with **3 years** and **50 kg** the DAMA result can be tested at **5** σ sensitivity

Backup

Signal and backgrounds

Background sources:

- → Radioactivity of detector and shield materials
- → Radioactivity of surroundings (laboratory environment)
- → Cosmic rays and secondary reactions (need to go underground, LNGS 3700 mwe)

The SABRE crystals

Ultra pure NaI(TI) crystals

- Astro Grade powder (Sigma Aldrich, now Merck)
- clean growth procedure: collaboration between Princeton and RMD, Boston
- Small crystal (2 kg) grown with optimal procedure in 2015

Element	DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal
	[ppb]	[ppb]	[ppb]	[ppb]
K	100	~13	9	9
Rb	n.a.	< 0.35	< 0.2	< 0.1
U	~0.02	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Th	~0.02	$0.7 \text{-} 10 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$

- Crystal Nal-31, grown in a standard quartz crucible.
- Mass: ~3.5 kg after polishing.

Average K level higher than the value of 9 ppb that was achieved in the crystal grown in 2015-2016.

- Crystal Nal-33, grown in a high purity crucible
- produced @ Princeton.
- Mass: ~3.5 kg after polishing
- ICP-MS measurements on samples from three positions of the crystal indicate that the K concentration is very low!

Low energy sensitivity

SABRE aims to be sensitive to the energies covered by DAMA/LIBRA [1-6] KeV_{ee} and below

Current Design:

- 2 x Hamamatsu R11065-20 3" PMTs per crystal with High QE >35% and minimal contaminations
- Direct PMT-Crystal coupling for maximal light yield
- Custom preamplifiers and super bialkali photocathodes → less afterglow and dark noise

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
$^{40}\mathrm{K}$	< 5.9	< 0.48	6.5
$^{60}\mathrm{Co}$	0.65	< 0.042	< 0.19
$^{238}\mathrm{U}$	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
$^{232}\mathrm{Th}$	< 0.0098	< 0.037	0.70
$^{228}\mathrm{Th}$	< 0.41	< 0.015	0.13

Active veto system

- A liquid scintillator veto (PC+PPO 3g/l) surrounding the Nal detector at 4π
- Veto events with E > 100 keV in the liquid scintillator
- Strongly reduce
 - external backgrounds
 - o internal backgrounds that release energy also in the liquid scintillator: 40K

⁴⁰K (11% BR) decays through electron capture to ⁴⁰Ar

- γ 1460 keV
- X-rays, Auger electrons 3 keV

Double location

- Twin experiments:
 - LNGS (Italy)
 - SUPL (Australia)
- Different environmental conditions:
 - Seasonal effects with opposite phase
 - Rock composition and radiopurity
 - Independent radon, temperature, pressure/ control systems and power supply

External y simulation

Simulation of U, Th and K in the LNGS rocks and propagate in SABRE geometry

	Hall B [ppm]	Hall C [ppm]
K	7068 ± 90	12780 ± 70
U	0.56 ± 0.01	0.966 ± 0.004
Th	0.54 ± 0.01	0.840 ± 0.006

In agreement with values in literature (H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322)

- Rock cavern simplified
 - → rock spherical shell of 40 cm thickness and 4.5 m internal radius in order to contain the shielding
- Input contaminations of ⁴⁰K, ²³⁸U and ²³²Th in the rock shell from the table

SABRE South

Preparation of Stawell Underground Physics Laboratory (SUPL) continues, with underground construction expected to begin this year.

On-going SABRE research activities include:

- Monte Carlo simulations,
- DAQ development and PMT testing,
- Scintillator (LAB) testing,
- Quenching factor measurements

Tritium activation

Assuming the production rate calculated by the ANAIS group the only way to maintain the Tritium background lower is to limit the exposure time at sea level to a few months and do not transport by flight.

This assumes that the Tritium build-up starts at the moment when the crystal is grown, meaning that our growth procedure efficiently removes any prior Tritium content in the powder.

Production rate from ANAIS calculations 84 nuclei/kg/day

J.Amarè et al. Astropart. Phys. 97, 96 (2018)