Developments in surface background removal for the DARWIN liquid xenon detector

Low-Radioactivity Techniques 2019, Jaca, Spain

Guillaume Eurin

for the DARWIN collaboration

Max-Planck-Institut für Kernphysik, Heidelberg

2019/05/22

The DARWIN project

Design:

- ▶ 50t LXe in total, 40t active mass
- Drift length and diameter over 2.5 m
- Large purification flow necessary
- Enhanced light collection efficiency
- Optimized photosensors
- ▶ Low background (222 Rn and (α , n))

R&D ongoing:

- Xenoscope: 2.6m drift demonstrator
- ► ULTIMATE: Large electrode development
- Large cryogenic systems (storage, cooling, purification)

Physics case of DARWIN

- Ultimate WIMP dark matter search
- ► Sensitivity to SI WIMP-nucleon σ : $\sigma_{SI} \simeq 10^{-49} \text{ cm}^2 \text{ @ m}_{\chi} = 50 \text{ GeV/c}^2$

Large potential for ν studies:

- ightharpoonup Coherent ν Nucleus Scattering
- ightharpoonup pp-u from the Sun
- Supernova ν
- Search for $0\nu2\beta$ decay JCAP (2016), 11, 017

Working principle of a dual phase Xenon TPC

- ► Energy deposits from interaction ⇒ excitation and ionization of LXe
- ▶ Light signal (S1) from scintillation after deexcitation

- ▶ Ionization e⁻'s drift upwards in E field
- e-'s extracted at LXe/GXe interface to excite and ionize GXe atoms
 - Secondary scintillation $\propto N_{e^-}$ extracted (S2)
- S2 observed by both PMT arrays, S1 mostly by bottom array
- Drift time and S2 pattern provide 3D position of the initial interaction

Working principle of a dual phase Xenon TPC

- ▶ Energy deposits from interaction ⇒ excitation and ionization of LXe
- ▶ Light signal (S1) from scintillation after deexcitation

Background from radon in rare-event searches

Natural radioactivity chains: β , γ & α -emitters

- ²²²Rn and ²²⁰Rn: noble gases ⇒ chemically inert
- ► Diffusion from environment or emanation from material
- Background from radon daughters: inside LXe plated-out on detector surface
- Background from high energy γ's from material
- ightharpoonup (lpha, n) reaction inside material

Surface background from long-lived ²²²Rn daughters

- Dust naturally contains ²³⁸U and ²³²Th
- ▶ ²²²Rn emanated from material environment (concrete, rocks)
- ▶ Prolonged exposure to dust and ambient air containing ²²²Rn:
 - \Rightarrow Surface contamination with long-lived 222 Rn daughters

Motivation for surface treatments

- Radon-dominated background in XENON1T ⇒ mitigation necessary
- Clean room to prevent dust containing ²³⁸U from depositing
- Background from radon daughters
 - Removal necessary and subsequent protection against new exposure to radon-containing air
 - ► Surface chemical treatment already in use \Rightarrow optimisable?
- ► Effect of chemical remnants on xenon purity
 - ⇒ Heidelberg Xenon (HeXe) TPC
- Investigation of radon emanation mitigation
 - ⇒ Surface coating (see F. Jörg's talk)

Preparation and measurement for surface cleaning

- Artificial loading of sample discs
- ► Uranium oxide and ²²⁸Th sources
- Surface contamination in ²²²Rn and ²²⁰Rn daughters
- Measurement with α -spectrometer
- SiPIN diode identifying isotopes
- Operation under vacuum

PTFE contamination reduction factors for ²²⁰Rn daughters

ng
7
8

► Note: for 210 Po factor \simeq 2 typically (HNO₃ and ethanol)

HeXe: dual-phase xenon TPC for purity measurements

- Surface cleaning qualification setup for LXe TPCs
- Modular TPC with length increase possible (from 5 to 20 cm)
- Hot getter for xenon purification
- 3 ports for Xe recirculation: GXe in, GXe out and LXe out
- Two methods for purity investigation after material cleaning:
 - Study of purity increase over time w/ recirculation
 - Study of purity decrease over time w/out recirculation

HeXe: dual-phase xenon TPC for purity measurements

Current system @ MPIK:

- ▶ TPC assembled in a nitrogen flushed glove bag
 - ⇒ Avoid dust, water and oxygen

Surface cleaning of PTFE

Preparation of the PTFE cylinder:

- Degreasing using detergent in an ultra-sonic bath (blank procedure)
- Acid treatment with e.g. HNO₃ (weakly or strongly concentrated)
- Rinsing in de-ionized water
- N₂ drying in an airtight vessel (50 mbar, 40 °C)

Installation in HeXe and measurement

- Minimised air exposure (less than 1 minute)
- Installation in glove bag

Measurement with the HeXe detector

▶ Dual-phase operation with drift field of up to 1.2 kV/cm

▶ ^{83m}Kr source emitting 2 IC e⁻'s at 32.1 keV and 9.4 keV

HeXe: Purity measurements

- ► Electronegative impurities can capture free electrons
 ⇒ S2 signal size depends on xenon purity
- ► Electron lifetime defined as e⁻ survival time before recombination
- No significant outgassing from chemical treatment
- ► Achievable electron lifetime: 0.5 ms

Summary

- DARWIN: ultimate dark matter detector additionally providing numerous neutrino physics channels
- Radon dominates background level for rare-event searches in several experiments
- Several origins for background requires various strategies
- Potential for surface contamination from radon daughters removal
- ► Chemical treatment characterized for compatibility with liquid xenon TPC operation

Surface ²²²Rn daughters contamination reduction

- ightharpoonup ²¹⁰Po measurement with lpha-spectrometer
- Nitric acid and various treatment time and temperature
- Reduction factors around 2

Procedure	Sample 1	Sample 2	Sample 3	Sample 4
1 st ethanol wiping	1.57 ± 0.08	-	1.61 ± 0.07	1.82 ± 0.04
2 nd ethanol wiping	-	-	1.22 ± 0.12	1.07 ± 0.04
HNO_3 (5 %)	1.24 ± 0.06	1.40 ± 0.15	-	-
HNO_3 (6 mol/L)	1.16 ± 0.05	1.09 ± 0.15	1.12 ± 0.11	1.10 ± 0.06
HNO ₃ (60 C)	1.06 ± 0.02	0.94 ± 0.09	-	-
Total reduction	2.4 ± 0.01	1.44 ± 0.08	2.15 ± 0.31	2.26 ± 0.14

Background from radon in the XENON1T detector

- ▶ ²²²Rn: current most critical background source in XENON1T.
- ▶ Total radon budget: $\sim 10 \mu \text{Bq/kg}$.

- ▶ Individual radon sources identified by emanation measurement.
- Fighting strategies: material selection (HPGE, ICPMS, emanation measurements), surface cleaning.

Radon emanation measurement strategies

- Proportional counters for sensitive radon emanation measurement
- ▶ Electrostatic radon monitors
- Parallel measurements available for high sample throughput
- Automatized emanation measurements with Auto-Ema setup for reproducibility

Proportional counter

Radon monitor

Auto-Ema

Background reduction strategies for XENONnT

- Radon is the dominating background in XENON1T
- Material screening and selection with γ -spectrometry

EPJ C (2017), 77, 890

- Online reduction using cryogenic distillation,
- ► Proofs of principle EPJ. C (2017), 77, 143 and XENON100 EPJ C (2017), 77, 358

► Expected reduction factor for the column: 100