Developments in surface background removal for the DARWIN liquid xenon detector Low-Radioactivity Techniques 2019, Jaca, Spain #### **Guillaume Eurin** for the DARWIN collaboration Max-Planck-Institut für Kernphysik, Heidelberg 2019/05/22 #### The DARWIN project #### Design: - ▶ 50t LXe in total, 40t active mass - Drift length and diameter over 2.5 m - Large purification flow necessary - Enhanced light collection efficiency - Optimized photosensors - ▶ Low background (222 Rn and (α , n)) #### R&D ongoing: - Xenoscope: 2.6m drift demonstrator - ► ULTIMATE: Large electrode development - Large cryogenic systems (storage, cooling, purification) ## Physics case of DARWIN - Ultimate WIMP dark matter search - ► Sensitivity to SI WIMP-nucleon σ : $\sigma_{SI} \simeq 10^{-49} \text{ cm}^2 \text{ @ m}_{\chi} = 50 \text{ GeV/c}^2$ #### Large potential for ν studies: - ightharpoonup Coherent ν Nucleus Scattering - ightharpoonup pp-u from the Sun - Supernova ν - Search for $0\nu2\beta$ decay JCAP (2016), 11, 017 ### Working principle of a dual phase Xenon TPC - ► Energy deposits from interaction ⇒ excitation and ionization of LXe - ▶ Light signal (S1) from scintillation after deexcitation - ▶ Ionization e⁻'s drift upwards in E field - e-'s extracted at LXe/GXe interface to excite and ionize GXe atoms - Secondary scintillation $\propto N_{e^-}$ extracted (S2) - S2 observed by both PMT arrays, S1 mostly by bottom array - Drift time and S2 pattern provide 3D position of the initial interaction # Working principle of a dual phase Xenon TPC - ▶ Energy deposits from interaction ⇒ excitation and ionization of LXe - ▶ Light signal (S1) from scintillation after deexcitation #### Background from radon in rare-event searches Natural radioactivity chains: β , γ & α -emitters - ²²²Rn and ²²⁰Rn: noble gases ⇒ chemically inert - ► Diffusion from environment or emanation from material - Background from radon daughters: inside LXe plated-out on detector surface - Background from high energy γ's from material - ightharpoonup (lpha, n) reaction inside material # Surface background from long-lived ²²²Rn daughters - Dust naturally contains ²³⁸U and ²³²Th - ▶ ²²²Rn emanated from material environment (concrete, rocks) - ▶ Prolonged exposure to dust and ambient air containing ²²²Rn: - \Rightarrow Surface contamination with long-lived 222 Rn daughters #### Motivation for surface treatments - Radon-dominated background in XENON1T ⇒ mitigation necessary - Clean room to prevent dust containing ²³⁸U from depositing - Background from radon daughters - Removal necessary and subsequent protection against new exposure to radon-containing air - ► Surface chemical treatment already in use \Rightarrow optimisable? - ► Effect of chemical remnants on xenon purity - ⇒ Heidelberg Xenon (HeXe) TPC - Investigation of radon emanation mitigation - ⇒ Surface coating (see F. Jörg's talk) # Preparation and measurement for surface cleaning - Artificial loading of sample discs - ► Uranium oxide and ²²⁸Th sources - Surface contamination in ²²²Rn and ²²⁰Rn daughters - Measurement with α -spectrometer - SiPIN diode identifying isotopes - Operation under vacuum # PTFE contamination reduction factors for ²²⁰Rn daughters | ng | |----| | | | | | 7 | | | | 8 | | | | | ► Note: for 210 Po factor \simeq 2 typically (HNO₃ and ethanol) ## HeXe: dual-phase xenon TPC for purity measurements - Surface cleaning qualification setup for LXe TPCs - Modular TPC with length increase possible (from 5 to 20 cm) - Hot getter for xenon purification - 3 ports for Xe recirculation: GXe in, GXe out and LXe out - Two methods for purity investigation after material cleaning: - Study of purity increase over time w/ recirculation - Study of purity decrease over time w/out recirculation # HeXe: dual-phase xenon TPC for purity measurements Current system @ MPIK: - ▶ TPC assembled in a nitrogen flushed glove bag - ⇒ Avoid dust, water and oxygen # Surface cleaning of PTFE #### Preparation of the PTFE cylinder: - Degreasing using detergent in an ultra-sonic bath (blank procedure) - Acid treatment with e.g. HNO₃ (weakly or strongly concentrated) - Rinsing in de-ionized water - N₂ drying in an airtight vessel (50 mbar, 40 °C) #### Installation in HeXe and measurement - Minimised air exposure (less than 1 minute) - Installation in glove bag #### Measurement with the HeXe detector ▶ Dual-phase operation with drift field of up to 1.2 kV/cm ▶ ^{83m}Kr source emitting 2 IC e⁻'s at 32.1 keV and 9.4 keV ## HeXe: Purity measurements - ► Electronegative impurities can capture free electrons ⇒ S2 signal size depends on xenon purity - ► Electron lifetime defined as e⁻ survival time before recombination - No significant outgassing from chemical treatment - ► Achievable electron lifetime: 0.5 ms #### Summary - DARWIN: ultimate dark matter detector additionally providing numerous neutrino physics channels - Radon dominates background level for rare-event searches in several experiments - Several origins for background requires various strategies - Potential for surface contamination from radon daughters removal - ► Chemical treatment characterized for compatibility with liquid xenon TPC operation # Surface ²²²Rn daughters contamination reduction - ightharpoonup ²¹⁰Po measurement with lpha-spectrometer - Nitric acid and various treatment time and temperature - Reduction factors around 2 | Procedure | Sample 1 | Sample 2 | Sample 3 | Sample 4 | |--------------------------------|-----------------|-----------------|-----------------|-----------------| | 1 st ethanol wiping | 1.57 ± 0.08 | - | 1.61 ± 0.07 | 1.82 ± 0.04 | | 2 nd ethanol wiping | - | - | 1.22 ± 0.12 | 1.07 ± 0.04 | | HNO_3 (5 %) | 1.24 ± 0.06 | 1.40 ± 0.15 | - | - | | HNO_3 (6 mol/L) | 1.16 ± 0.05 | 1.09 ± 0.15 | 1.12 ± 0.11 | 1.10 ± 0.06 | | HNO ₃ (60 C) | 1.06 ± 0.02 | 0.94 ± 0.09 | - | - | | Total reduction | 2.4 ± 0.01 | 1.44 ± 0.08 | 2.15 ± 0.31 | 2.26 ± 0.14 | ## Background from radon in the XENON1T detector - ▶ ²²²Rn: current most critical background source in XENON1T. - ▶ Total radon budget: $\sim 10 \mu \text{Bq/kg}$. - ▶ Individual radon sources identified by emanation measurement. - Fighting strategies: material selection (HPGE, ICPMS, emanation measurements), surface cleaning. ## Radon emanation measurement strategies - Proportional counters for sensitive radon emanation measurement - ▶ Electrostatic radon monitors - Parallel measurements available for high sample throughput - Automatized emanation measurements with Auto-Ema setup for reproducibility Proportional counter Radon monitor Auto-Ema ## Background reduction strategies for XENONnT - Radon is the dominating background in XENON1T - Material screening and selection with γ -spectrometry EPJ C (2017), 77, 890 - Online reduction using cryogenic distillation, - ► Proofs of principle EPJ. C (2017), 77, 143 and XENON100 EPJ C (2017), 77, 358 ► Expected reduction factor for the column: 100