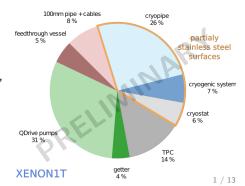
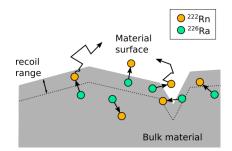

Application of surface coatings for radon mitigation Low Radioactivity Techniques - 2019

• Florian Jörg, Guillaume Eurin, Hardy Simgen

May 22, 2019


Motivation for radon mitigation

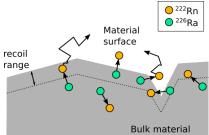
- Mitigation strategies: Screening, Distillation (see H. Simgen & E. Miller),
 Surface coating
- Significant fraction is emanated from stainless steel surfaces


Florian Jörg - Low Radioactivity Techniques - 2019

- XENON1T achieved radon budget $10 \,\mu Bq/kg$
- ²²²Rn is a homogeneous internal background source
- No fiducialization possible, have to tackle it at the source

Radon mitigation strategy Emanation by recoil

- \blacktriangleright ²²⁶Ra ^{4.8} MeV ²²²Rn
- \blacktriangleright Recoil range of $^{222}{\rm Rn}$ in steel \lesssim 20 nm



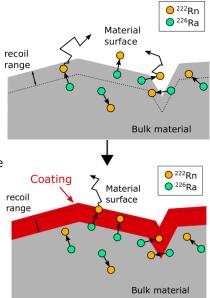
Radon mitigation strategy Emanation by recoil

- \blacktriangleright ²²⁶Ra ^{4.8} $\stackrel{\text{MeV}}{\longrightarrow}$ ²²²Rn
- Recoil range of 222 Rn in steel \lesssim 20 nm

Emanation by diffusion

► Influenced by diffusion constant, temperature and half-life of the radon isotope (i.e. T^{222Rn} ≫ T^{220Rn}_{1/2})

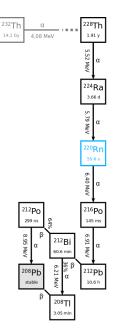
Radon mitigation strategy Emanation by recoil


- \blacktriangleright ²²⁶Ra ^{4.8} $\stackrel{\text{MeV}}{\longrightarrow}$ ²²²Rn
- Recoil range of 222 Rn in steel \lesssim 20 nm

Emanation by diffusion

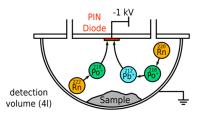
 Influenced by diffusion constant, temperature and half-life of the radon isotope (i.e. T^{222Rn}_{1/2} ≫ T^{220Rn}_{1/2})

Coating approach


- Block recoil and reduce diffusion of radon
- Need for (radio-) pure coating material

Available Samples

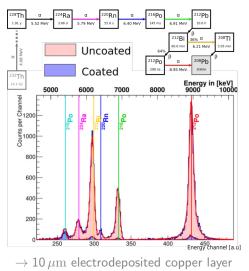
- Tungsten rods containing 4% of natural ThO₂
- + Sufficiently active ^{220}Rn source
- + Good availability
 - Metallic surface but not stainless steel
 - ²²²Rn emanation only little



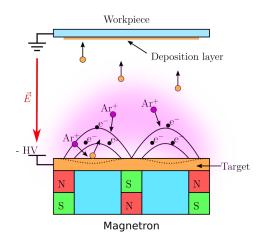
Measurement (Radon Monitor)

- Electrostatic collection of charged radon daughters
- Detection efficiency for ²²²Rn regularly monitored (≈ 33%)
- Measurement of α energy using a (windowless) silicon PIN diode
- Identification of various a lines possible
- Relative measurement before/after coating:

$$\boxed{R = \frac{A_{before}(Rn)}{A_{after}(Rn)}}$$



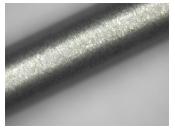
Measurement (Radon Monitor)


Energy spectrum of thoriated welding rods

- Coating largely reduces the amount of emanation
- ²²⁴Ra is visible only in uncoated spectrum
- Constant ²¹⁰Po signal from contamination on the PIN diode

Coating techniques I (Sputtering)

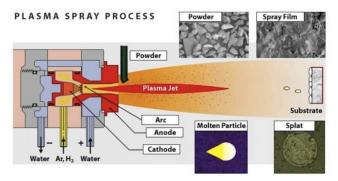
- Performed by EuropCoating (German company)
- Process in low pressure argon atmosphere
- Deposition of 400 - 800 nm titanium
- Work piece at room temperature
- Thronton model predicts surface micro-structure



Coating techniques I (Sputtering) Results

Reduction factors	222 Rn	220 Rn	²²⁴ Ra
sample $\#1$	2.2 ± 1.7	4.51 ± 0.07	> 25
sample $\#2$	1.3 ± 0.2	1.49 ± 0.01	3.9 ± 0.6
sample $\#3$	-	1.18 ± 0.01	>50

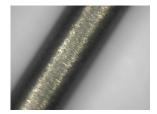
- Thronton model \rightarrow vertically aligned, porous grains
- Higher workpiece temperature required



\rightarrow uncoated Florian Jörg - Low Radioactivity Techniques - 2019

Coating techniques II (Plasma deposition)

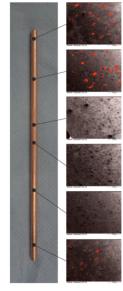
- In partnership with Dr. Laure Plasmatechnologie (Stuttgart, Germany)
- \blacktriangleright Coating with $\approx 1\,\mu{\rm m}$ of Copper
- Powder condensates on work piece surface



https://www.sciencelearn.org.nz

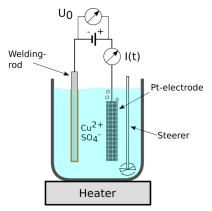
Coating techniques II (Plasma deposition) Results

Reduction factors	220 Rn	
$arnothing$ $1\mathrm{mm}$ rod	2.27 ± 0.02	
arnothing 4.8 mm rod	22.0 ± 1.8	


- \blacktriangleright Complete suppression of $^{224}\mathrm{Ra}$ observed
- Test coatings \rightarrow reproducibility difficult

 \rightarrow uncoated

 $\rightarrow \mathsf{coated}$

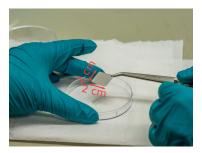


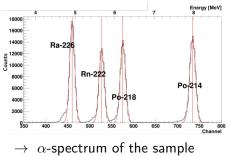
SEM/BSE analytics

Florian Jörg - Low Radioactivity Techniques - 2019

Coating techniques III (Electro-deposition)

Reduction factors	coating thickness	220 Rn	222 Rn
sample $\#1$	10 $\mu { m m}$	107 ± 14	-
sample $#2$	$5\mu{ m m}$	47 ± 4	-
sample $\#3$	$5\mu{ m m}$	129 ± 3	7.8 ± 2.6
sample $#4$	$2\mu{ m m}$	12 ± 4	-


- Tests with electro-deposition of copper have been made at MPIK
- Used electrolyte: $CuSO_4$ (0.05 mol/l) in H_2SO_4 (1 mol/l)
- Good adhesion achievable by heating bath to 40 °C and steering


Florian Jörg - Low Radioactivity Techniques - 2019

What's next?

Implanted stainless steel

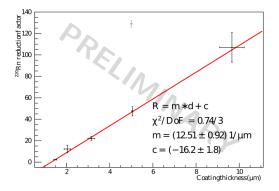
- Stainless steel samples implanted with ²²⁶Ra by
 facility @ CERN
- + Sufficiently active source $(\approx 2 \,\mathrm{Bq}^{222} \mathrm{Rn} \text{ emanation})$
- + Stainless steel surface
- + Two samples produced so far
 - \circ Implantation energy: $30\,{\rm keV} \rightarrow$ shallow implantation depth $7\,{\rm nm}$
 - LHC & ISOLDE are now in long shutdown (until 2021)

What's next?

Explore further techniques

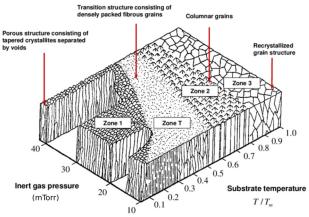
- Multi-layer coatings for enhanced diffusion mitigation (e.g. copper + nickel)
- Polymer coatings (e.g. diamond like carbon)

More systematic studies


- ▶ Determine ²²²Rn reduction factor (ISOLDE samples)
- Dependence of radon diffusion in coatings at different temperatures
- Temperature stability of coatings
- Mechanical stability of coatings (adhesion, hardness, ...)
- Compatibility of coating with LXe purity (see G. Eurin's talk)

Summary

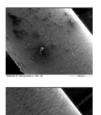
- Radon mitigation will be an important aspect of several future rare-event searches.
- Application of surface coatings has proven to be an effective method against radon emanation
- Radon reduction factors of the order of 100 have been achieved


More results are on the way Stay tuned!

Dependence of ²²⁰Rn reduction factor (layer thickness)

- Combining all copper coatings (electro- and plasma)
- Linear dependence of reduction factor with coating thickness
- Behavior still needs to be explained by a model (diffusion)
- Outlier @ 5 μm might be due to different detection efficiency

Thronton model (sputtering)

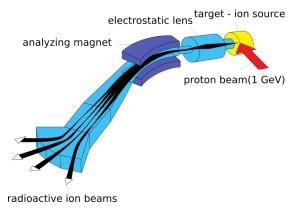


- ▶ Low radon reduction achieved, despite high ²²⁴Ra suppression
- Recoil emanation well controlled but insufficient diffusion tightness
- Thronton model zone $1 \rightarrow$ probably not ideal

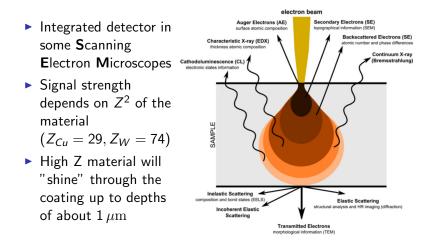
Sputtering investigation

WTh1-2

Respondent 4, 100x 58 anno 300 pm

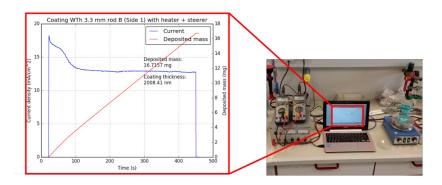

- Sample #2 vs.
 Sample #1
- Investigation with SEM/BSE → no significant defects
- Large difference in ²²⁴Ra suppression still unclear

Florian Jörg - Low Radioactivity Techniques - 2019

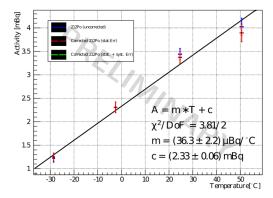

Ion Separation Online Device (ISOLDE) @ CERN

- \blacktriangleright Protons from pre accelerator of LHC @ 1.4 ${\rm GeV}$
- Irradiation of uranium-carbide target

 production of various isotopes
- Separation of desired isotope by el/mag filter

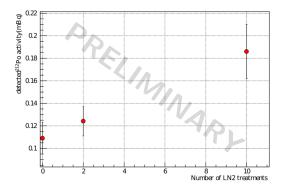


Back Scatter Electron (BSE) analysis



Electro-deposition setup

- Current is constantly read out and digitized
- \blacktriangleright Time integration of current \rightarrow total deposited mass
- Allows for an on-line estimation of the layer (average) thickness


Dependence of ²²⁰Rn reduction factor (temperature)

Temperature dependence of corrected 212Po equilibrium activity

- Measurment of a sputtered sample (titanium)
- Thoriated tungsten welding rod as base material

Dependence of 220 Rn reduction factor (LN2 treatment)

- Electrodeposited copper $(10 \, \mu m)$
- Thoriated tungsten welding rod (arnothing 4.8 mm) as base material
- Repeated temperature shock by direct submersion of the sample in liquid nitrogen (LN2)