

Radiopurity of Surfaces – Removal of long-lived ²²²Rn daughters from metals

G. Zuzel, M. Grab, T. Mróz, K. Pelczar, M. Wójcik Institute of Physics Jagiellonian University, Cracow, Poland

Outline

- Introduction motivation
- High-activity case study of artificially contaminated samples
- Low-activity case study of naturally contaminated samples
- Summary

²³⁸U decay chain

ICP-MS / LA ICP-MS

Team

(FNP

 α/β spectroscopy

High-activity case

- Samples in a form of discs with 50 mm diameter
- To increase the sensitivity samples were artificially loaded with ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po: placed in a strong ²²²Rn source for several months (²¹⁰Po specific activities of ~100 Bq/m²)
- Screening of ²¹⁰Po with an alpha spectrometer 50 mm Si-detector, bcg ~2 α/d (1-10 MeV) sensitivity ~20 mBq/m² (100 mBq/kg, ²¹⁰Po)
- Screening of ²¹⁰Bi with a beta spectrometer 2×50 mm Si(Li)-detectors, bcg ~0.18/0.40 cpm sensitivity ~10 Bq/kg (²¹⁰Bi)
- Screening of ²¹⁰Pb (46.6 keV line) with a gamma spectrometer 25% HPGe detector with an active and a passive shield

Introduction

High-act. case

Low-act. case

Summary

High-activity case

	Activity reduction factors after etching/electropolishing			
Isotope			Germanium	
	Copper	Stainless steel	NPGe	HPGe
²¹⁰ Pb	50 / 300	100 / 400	100 / -	700 / -
²¹⁰ Bi	50 / 300	100 / 800	400 / -	800 / -
²¹⁰ Po	1 / 400	20 / 700	1000 / -	100 / -

Introduction

High-act. case

Low-act. case

Copper

Summary

- etching: 5 min in $(1\% H_2SO_4 + 3\% H_2O_2)$ and 5 min in 1% citric acid

- electro-polishing: 85 % $\tilde{H}_3PO_4 + 5$ % 1-butanol (C₄H₁₀O)

Stainless steel:

- etching: (20 % HNO_3 + 1.7 % HF) and 15 % HNO_3
- electro-polishing: 40 % $H_3PO_4 + 40$ % $H_2SO_4 + 3$ % CrO_3

Germanium:

- etching: CP4 solution (45.45 ml HNO_3 + 27.27 ml HF + 27.27 ml CH₃COOH + 0.5 ml Br for 100 ml solvent) done by Canberra-France in Lingolsheim in cooperation with MPP Munich

NIM A 676 (2012) 140 NIM A 676 (2012) 149

High-activity case

	Activity reduction factors after etching/electropolishing			
Isotope			Germanium	
	Copper	Stainless steel	NPGe	HPGe
²¹⁰ Pb	50 / 300	100 / 400	100 / -	700 / -
²¹⁰ Bi	50 / 300	100 / 800	400 / -	800 / -
²¹⁰ Po	1/400	20 / 700	1000 / -	100 / -

Introduction

High-act. case

Low-act. case

Summary

Copper

- etching: 5 min in $(1\% H_2SO_4 + 3\% H_2O_2)$ and 5 min in 1% citric acid - electro-polishing: 85 % $H_3PO_4 + 5$ % 1-butanol ($C_4H_{10}O$)

Stainless steel:

- etching: (20 % HNO₃ + 1.7 % HF) and 15 % HNO₃

- electro-polishing: 40 % $H_3PO_4 + 40$ % $H_2SO_4 + 3$ % CrO_3

Germanium:

- etching: CP4 solution (45.45 ml HNO_3 + 27.27 ml HF + 27.27 ml CH_3COOH + 0.5 ml Br for 100 ml solvent) done by Canberra-France in Lingolsheim in cooperation with MPP Munich

NIM A 676 (2012) 140 NIM A 676 (2012) 149

Low-activity case

Introduction

High-act. case

Low-act. case

'eam

Summary

- Only ²¹⁰Po studied
- Low background, large surface (LBS) alpha spectrometer
- Ar used as counting gas (3.5 l/min)
- Sample size: 43×43 cm² / 30 cm diam. disc, a few mm thick
- PSD + veto guard (discrimination of background events)

Background spectrum

- Drawer covered with OFCu \rightarrow significant reduction of background below 5.3 MeV w.r.t. steel tray
- Above 5.3 MeV background dominated by ²²⁰Rn/²²²Rn daughters (residual emanation from the detector components), and around 2 MeV by miss-identification of muons
- Count rate in the energy range of (1.5 6.0) MeV: 130 cts/d/m²

Introduction

High-act. case

Low-act. case

Team

Summary

FNP

Background spectrum

Low background ORTEC α detector (40 mm diameter) at LNGS vs. LBS spectrometer: **factor** ~200 improvement.

Analysis method

MC used to de-convolute contributions form ²¹⁰Po in the bulk material and on the surface, sensitivities: $C_{bulk} \le 50 \text{ mBq/kg}, C_{sf} \le 1 \text{ mBq/m}^2$

Cu sample: $C_{bulk} = (5.7 \pm 1.1) \text{ Bq/kg}$ $C_{sf} = (170 \pm 13) \text{ mBq/m}^2$

Introduction

Low-act. case

Summary

Etching of Cu

Etching 5 min in (1% $H_2SO_4 + 3\% H_2O_2$), 5 min passivation in 1% citric acid

eam

Cu sample with high bulk ²¹⁰Po content Some ²¹⁰Po removed from the bulk (~28 mBq) re-deposited on the surface

Autodeposition of Po

Autodeposition of Po during etching – "local" process

Reducing time of single etch

- Etching procedure: 5 x 1 min wash with a mixture of 1% $H_2SO_4 + 3\% H_2O_2$
- Passivation with 1% citric acid (5 min)
- Washing in high-purity deionized water (18 M Ω ×cm)

Low Radioactivity Techniques 2019, 19-24 May 2019, Canfranc, Spain

Reducing time of single etch

- Etching procedure: 1/2 runs for 40 sec in a mixture of 1% H₂SO₄ + 3% H₂O₂

- Passivation with 1% citric acid

Electroformed copper (LSC) - Etching procedure: 2 x 4 runs for 40 sec in a mixture of 1% $H_2SO_4 + 3\% H_2O_2$ - Passivation with 1% citric acid 14 12 $C_{sf in} = (25 \pm 2) \text{ mBq/m}^2$ 10 Introduction 8 $\mathbf{R}_1 = (\mathbf{8.1} \pm \mathbf{1.0})$ High-act. case 6 4 Low-act. case 2 Summary 2. 5.5 6.5 7 1.5 2.5 5. 6. 3 Energy [MeV] 2.0 d ×50 keV 1.5 $\mathbf{R}_2 \ge 3$ Count rate [-1.0 $C_{sf fin} < 1 mBq/m^2$ 0.5 0.0 3. 5. 5.5 6. 6.5 7. 1. 2. 2.5 3.5 4 4.5 15 Energy [MeV] Team

Increasing H₂O₂ concentration

- Etching procedure: 1 run for 40 sec in a mixture of 1% $H_2SO_4 + 10\% H_2O_2$
- Passivation with 1% citric acid

Increasing H₂SO₄ and H₂O₂

- Etching procedure: 40 sec in a mixture of 5% $H_2SO_4 + 10\% H_2O_2$
- Passivation with 1% citric acid (5 min)
- Washing in high-purity deionized water (18 M Ω ×cm)

Step	²¹⁰ Po surface spec. activity [mBq/m ²]	²¹⁰ Po reduction factor
0	365 ± 55	
1	139 ± 21	2.6 ± 0.7
2	74 ± 15	1.9 ± 0.6
3		
1-2		4.9 ± 1.7

Low Radioactivity Techniques 2019, 19-24 May 2019, Canfranc, Spain

Introduction High-act. case

Low-act. case

Summary

Etching in nitric acid

- Etching procedure: 1 run for 1 min in a mixture of 15% $HNO_3 + 2\% H_2O_2$
- Passivation with 1% citric acid

Step	Conc. of HNO ₃ [%]	Conc. of H ₂ O ₂ [%]	²¹⁰ Po reduction
1	15	2	5.6 ± 0.4
2	15	4	2.3 ± 0.3
3	15	7	5.0 ± 0.4

'eam

Summary

Electro-polishing

Introduction

High-act. case

Low-act. case

Summary

(FNP)

Electro-polishing of copper

ETP copper (z4), 43 cm x 43 cm x 0.1 cm,

eam

Electro-polishing of stainless steel

Summary

- Etching/electro-polishing removes ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po from metal surfaces, the effect seems to be material- and surface finish dependent. Long etching did not affect ²¹⁰Po on copper due to re-deposition of Po
- Multi-stage etching with H₂SO₄ or HNO₃ with short (< 1 min) steps removes ²¹⁰Po from copper, 8 10 steps are sufficient to obtain practically ²¹⁰Po-free surface (bulk starts to dominate)

Introduction

High-act. case

Low-act. case

Summary

- At the level of mBq/m² proper etching/electro-polishing does not contaminate surfaces with ²¹⁰Po
- Other methods under investigations (combination of tumbling, electro-polishing and etching)
- Surfaces of copper and stainless steel protected against ²²²Rn (air) do not show indications of ²¹⁰Po down to mBq/m²
- How to avoid ${}^{210}\text{Po?} \rightarrow$ handling of the components in ${}^{222}\text{Rn}$ -free atmosphere (${}^{222}\text{Rn}$ -free clean room)