Radiopurity of Atmospheric Argon

LEGEND

Biörn Lehnert Berkeley Lab

LRT Workshop, Jaca (Spain), May 22 2019

Radiopurity of Atmospheric Argon

LEGEND

Björn Lehnert Berkeley Lab

See also underground argon talks:

Henning Back: Low-radioactivity argon for low-level radiation detectors: a global overview

Luciano Romero Low-radioactivity argon for DarkSide 20k

- Intrinsic radioactive isotopes
- Challenges in low bg experiments
- Recent new measurements
- Physics one can do with argon isotopes

LRT Workshop, Jaca (Spain), May 22 2019

Atmospheric Argon

atmLAr in Current/Future Low Background Experiments

DEAP-3600, ArDM (target)

DarkSide-20k (veto)

Dark Matter

Double Beta Decay GERDA (veto) LEGEND-200 (veto)

LAr: LAr: LAr: 70,000 t **HPGe** 3.3 t 90 t PMT ≈70 MBq ³⁹Ar **HPGe**

Neutrino Physics

MicroBooNE, ... (target)

DUNE, Icarus,

atmLAr in Current/Future Low Background Experiments

Double Beta Decay GERDA (veto) LEGEND-200 (veto)

Talk: Mario Schwarz

Results of the backgroundfree search for neutrinoless double beta decay with GERDA &challenges of the LEGEND experiment

Talk: Matthew GreenLEGEND: Next-GenerationNeutrinoless Double-BetaDecay Search inGermanium-76

Dark Matter DEAP-3600, ArDM (target) DarkSide-20k (veto)

Talk: Chris Jillings Results and the Background Model from DEAP-3600

Neutrino Physics

DUNE, Icarus, MicroBooNE, ... (target)

³⁹Ar in Atmospheric Argon

- ³⁹Ar is cosmogenically produced
- 1st forbidden unique β-decay:
 - $T_{1/2} = 269 \pm 3 \text{ yr}$
 - β endpoint: 565±5 keV
- Major background in LAr dark matter experiments
- Previously measured by WARP and ArDM

Reaction	Estimated ³⁹ Ar Production rate	Fraction of total $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	[atoms/ kg/ day]	AAr [70]
40 Ar(n, 2n) ³⁹ Ar +	759 ± 122	72.3
40 Ar(n, d) ³⁹ Cl	,	, 2.0
${}^{40}\text{Ar}(\mu, n){}^{39}\text{Cl}$	172 ± 19 arXiv:1	902.09072 16.4
40 Ar(γ , n) 39 Ar	89 ± 19	8.5
40 Ar(γ , p) 39 Cl	23.8 ± 8.7	2.3
⁴⁰ Ar(p, 2p) ³⁹ Cl	<0.1	< 0.01
⁴⁰ Ar(p, pn) ³⁹ Ar	3.6 ± 2.2	0.3
$^{38}Ar(n \ \gamma)^{39}Ar$	≪0.1 (UAr)	-
	1.1 ± 0.3 (AAr)	0.1
Total	1048 ± 126	100

ArDM: 850 kg LAr TPC

6

³⁹Ar Measurement in DEAP-3600

Experiment	A [Bq/kg]	Reference	
WARP	1.01 ±0.10	NIM A 574 (2007) 83–88	
ArDM	0.95 ±0.05	J Cosm a Astrop Phys. 12 (2018)	NEW
DEAP-3600	0.953 ±0.028	M. Dunford, PhD Thesis (2018)	

LRT 2019, May 22 2019 Jaca

B. Lehnert

7

Precision Measurement of ³⁹Ar Shape

- 1st forbidden unique beta decay
- Weak sensitivity to g_A/g_V ratio appears in second order terms of shape factors

Spectral shapes of forbidden argon β decays as background component for rare-event searches

J. Kostensalo, J. Suhonen and K Zuber

arXiv:1705.05726v1

$$C(w_e) = g_{\mathcal{V}}^2 C_{\mathcal{V}}(w_e) + g_{\mathcal{A}}^2 C_{\mathcal{A}}(w_e) + g_{\mathcal{V}} g_{\mathcal{A}} C_{\mathcal{V}\mathcal{A}}(w_e)$$

- Sensitivity dominantly at low energies
- Can be explored by LAr dark matter experiments e.g. DEAP-3600
- Sensitivity is small (<0.1%) but DEAP-3600
 will collect 3x10¹¹ ³⁹Ar events in 3 yr
- Precision measurement with challenge to understand systematics of detector response

³⁹Ar Mitigation in DEAP-3600: Pulse Shape Analysis

⁴²Ar / ⁴²K in Atmospheric Argon

- ⁴²Ar is produced in atmosphere via
 - ⁴⁰Ar(α,2p)⁴²Ar reactions (dominant)
 - ${}^{40}Ar(n,\gamma){}^{41}Ar(n,\gamma){}^{42}Ar$ (nuclear bombs)
- Decay chain
 - ⁴²Ar: 33 yr, β: 599 keV
 - ⁴²K: 12 h, β: 3525 keV (can be ion)
 - ⁴²Ca: stable
- Dominant background in GERDA / LEGEND-200

⁴²Ar / ⁴²K in Atmospheric Argon

HPGe

HPGe

42**K**

42**k**

42**A**I

- ⁴²Ar is produced in atmosphere via
 - ⁴⁰Ar(α,2p)⁴²Ar reactions (dominant)
 - ${}^{40}Ar(n,\gamma){}^{41}Ar(n,\gamma){}^{42}Ar$ (nuclear bombs)
- Decay chain
 - ⁴²Ar: 33 yr, β: 599 keV
 - ⁴²K: 12 h, β: 3525 keV (can be ion)
 - ⁴²Ca: stable
- Dominant background in GERDA / LEGEND-200

Previous ⁴²Ar Measurements

Experiment	Technique	Activity [µBq/kg]	Reference
DBA	LAr ion. det.	< 61.4 (90% CL)	NIM A 416:179 (1998)
DBA	LAr ion. det.	< 44.0 (90% CL)	Int.Ex.T. 46:153 (2003)
GERDA Phase I	HPGe γ -spec.	$=91^{+8}_{-20} - 168^{+22}_{-18}$	EPJ C 74:2764 (2014)
DBA	LAr ion. det.	$=92^{+22}_{-46}$	J of P CS 718 062004 (2016)
DEAP-3600	Scintillation	$= 40.4 \pm 5.9$	arXiv:1905.05811 (2019)

DBA ionization main systematic: background **GERDA** γ-spec. main systematic: electric field

Recently: Measurement in DEAP-3600

⁴²K Measurement in DEAP-3600 arXiv:1905.05811 (2019)

⁴²K Measurement in DEAP-3600

arXiv:1905.05811 (2019)

⁴²K Measurement in DEAP-3600

arXiv:1905.05811 (2019)

⁴²Ar Summary

Experiment	Technique	Activity [µBq/kg]	Reference
DBA	LAr ion. det.	< 61.4 (90% CL)	NIM A 416:179 (1998)
DBA	LAr ion. det.	< 44.0 (90% CL)	Int.Ex.T. 46:153 (2003)
GERDA Phase I	HPGe γ-spec.	$= 91^{+8}_{-20} - 168^{+22}_{-18}$	EPJ C 74:2764 (2014)
DBA	LAr ion. det.	$=92^{+22}_{-46}$	J of P CS 718 062004 (2016)
DEAP-3600	Scintillation	$= 40.4 \pm 5.9$	arXiv:1905.05811 (2019)

DBA ionization main systematic: background **GERDA** γ-spec. main systematic: electric field **DEAP-3600** scintillation

main systematic: energy scale

- Three independent measurements of ⁴²Ar / ⁴²K activity in atmospheric LAr
- Different systematic uncertainties
- Dominant background for GERDA / LEGEND double beta decay search

⁴²Ar / ⁴²K Background in GERDA + LEGEND-200

17

⁴²K Background Mitigation: GERDA + LEGEND

1. Avoid ⁴²K ion drift

- Deploy nylon mini-shroud around detector strings
- Transparent and TPB coated to shift 128 nm scintillation light

Eur. Phys. J. C (2018) 78:15

2. Pulse shape discrimination of surface events

3. Future: Potentially use LAr from underground sources in LEGEND-1000

18

³⁶Ar - Neutrinoless Double Electron Capture

$$^{36}Ar + 2e^{-} - - - > ^{36}S + 2 X - ray + E$$

- Q-value = 432.58 ± 0.19 keV
- Lepton number violating process with 3 possible decay modes:
 - single γ emission (429.9 keV)
 - double γ emission
 - internal conversion e- emission

GERDA γ-spec:

- sensitive only to single γ emission
- low efficiency
- high resolution
- low background

DEAP-3600 calorimetric:

- sensitive to all possible decay modes
- ≈100% efficiency
- poor resolution
- huge ³⁹Ar background

- Peak search at 432.6 keV on large ³⁹Ar background
- The semi-empiric bg model describes the peak region with high precision O(10⁻⁴)
- Background in search window: 7.5x10⁷ cts/keV or 4x10⁴ cts/keV/kg/yr

alliba i nasc i	ð	20.0×10 yr (0070 01)	
DEAP-3600	γ, γγ, IC	>4×10 ²⁰ yr (90% Cl)	M. Dunford, PhD Thesis (2018)
Theory (QRPA)	all	10 ³⁸ yr (@ m _v = 1 eV)	A. Merle, PhD Thesis (2009)

LRT 2019, May 22 2019 Jaca **B.** Lehnert New

Conclusions

• ³⁹Ar (≈1 mBq/kg)

- Agreement in literature
- Important background for DM exp.
- Precision measurements interesting for nuclear structure (g_A)

Experiment	A [Bq/kg]	Reference
WARP	1.01 ±0.10	NIM A 574 (2007) 83–88
ArDM	0.95 ±0.05	J Cosm a Astrop Phys. 12 (2018)
DEAP-3600	0.953 ±0.028	M. Dunford, PhD Thesis (2018)

- ⁴²Ar (≈40-100 uBq/kg)
 - Three independent measurements: Tension between results
 - Dominant background for GERDA / LEGEND-200 double beta decay experiment

Experiment	Technique	Activity [µBq/kg]	Reference
GERDA Phase I	HPGe γ-spec.	$= 91^{+8}_{-20} - 168^{+22}_{-18}$	EPJ C 74:2764 (2014)
DBA	LAr ion. det.	$= 92^{+22}_{-46}$	J of P CS 718 062004 (2016)
DEAP-3600	Scintillation	$= 40.4 \pm 5.9$	arXiv:1905.05811 (2019)

• ³⁶Ar (0.33%)

- Double electron capture isotope
- $T_{1/2} > 3.6 \times 10^{21} \text{ yr}$

Experiment	Mode	Half-life	Reference	20
GERDA Phase I	γ	>3.6×10²¹ yr (90% CI)	EPJ C 76:652 (2016)	2
DEAP-3600	γ, γγ, IC	>4×10 ²⁰ yr (90% Cl)	M. Dunford, PhD Thesis	s (2018)
Theory (QRPA)	all	10^{38} yr (@ m _v = 1 eV)	A. Merle, PhD Thesis (20	009)

Backup

³⁹Ar Mitigation in DEAP-3600: Pulse Shape Analysis

DEAP-3600 ER Component Activities

Component	Included	Simulated	Total activity	Reference
	in model?	isotopes	[Bq]	
³⁹ Ar LAr bulk	F	$^{39}\mathrm{Ar}$	3282 ± 340	[11]
$^{42}\mathrm{Ar}/^{42}\mathrm{K}\ \mathrm{LAr}\ \mathrm{bulk}$	\mathbf{F}	${}^{42}{ m Ar}$, ${}^{42}{ m K}$		
222 Rn LAr bulk	\mathbf{C}	214 Pb, 214 Bi	$(5.9 \pm 0.7) \times 10^{-4}$	[6]
220 Rn LAr bulk	\mathbf{F}	212 Pb, 212 Bi, 208 Tl	$(8.5 \pm 4.9) \times 10^{-6}$	[6]
²¹⁰ Pb LAr surf	С	²¹⁰ Pb, ²¹⁰ Bi	$(2.2 \pm 0.4) \times 10^{-3}$	[6]
226 Ra AV bulk	F	214 Pb, 214 Bi, 210 Pb, 210 Bi	< 0.08	[screening]
²³² Th AV bulk	\mathbf{F}	228 Ra, 228 Ac, 212 Pb, 212 Bi, 208 Tl	< 0.22	[screening]
40 K AV bulk	Ν	40 K	< 2.5	[screening]
²²² Rn RnEm	D	214 Bi	< 1	[3]
²²⁰ Rn RnEm	D	208 Tl	< 1	[3]
²²⁶ Ra LG bulk	Ν	214 Pb, 214 Bi, 210 Bi	< 0.4	[screening]
²³² Th LG bulk	\mathbf{F}	228 Ac, 212 Pb, 212 Bi, 208 Tl	< 1.3	[screening]
⁴⁰ K LG bulk	Ν	40 K	< 4.6	[screening]
²²⁶ Ra FB bulk	Ν	214 Pb, 214 Bi, 210 Bi	< 1.5	[screening]
²³² Th FB bulk	\mathbf{F}	^{228}Ac , ^{212}Pb , ^{212}Bi , ^{208}Tl	< 0.9	[screening]
⁴⁰ K FB bulk	Ν	40 K	< 9.6	[screening]
226 Ra PMT all	F	214 Pb, 214 Bi, 210 Bi	216 ± 24	[screening]
232 Th PMT all	\mathbf{F}	228 Ac, 212 Pb, 212 Bi, 208 Tl	39 ± 4	[screening]
40 K PMT all	\mathbf{F}	40 K	454 ± 33	[screening]
neutron PMT glass	F	See caption		
²²⁶ Ra SSS bulk	F	²¹⁴ Bi	10.6 ± 5.8	[screening]
²³² Th SSS bulk	\mathbf{F}	228 Ac, 208 Tl	9.7 ± 5.6	[screening]
⁶⁰ Co SSS bulk	F	60 Co	78 ± 11	[screening]

DEAP-3600 ER BG Model Priors + Posteriors

Input prior [Bq]	Best fit [Bq]	Central 68% interval [Bq]
3282 ± 340	3009	[2977 - 3042]
[0 - 0.3]	0.129	[0.126 - 0.131]
$= 5.9 \times 10^{-4}$	-	-
$(8.5 \pm 4.9) \times 10^{-6}$	7.4×10^{-6}	$< 13.7 \times 10^{-6}$
$= 2.0 \times 10^{-4}$	-	-
$(0\pm 8) \times 10^{-2}$	0	$< 3.9 \times 10^{-2} (90\% \text{ CI})$
$(0 \pm 22) \times 10^{-2}$	1.5×10^{-2}	$[1.1 - 1.6] \times 10^{-2}$
0 ± 1.3	0.13	< 0.2 (90% CI)
0 ± 0.9	0	< 0.27 (90% CI)
[500 - 1500]	776	[757 - 795]
216 ± 24	136	[131 - 137]
39 ± 4	41.5	[38.1 - 44.4]
$[0-5] \times 10^{-2}$	1.47×10^{-2}	$[1.33 - 1.62] \times 10^{-2}$
78 ± 11	45.0	[42.5 - 47.5]
10.6 ± 5.8	4.9	< 12.9 (90% CI)
9.7 ± 5.6	43.0	[36.9 - 49.0]
	Input prior [Bq] 3282 ± 340 [0 - 0.3] $= 5.9 \times 10^{-4}$ $(8.5 \pm 4.9) \times 10^{-6}$ $= 2.0 \times 10^{-4}$ $(0 \pm 8) \times 10^{-2}$ $(0 \pm 22) \times 10^{-2}$ 0 ± 1.3 0 ± 0.9 [500 - 1500] 216 ± 24 39 ± 4 $[0 - 5] \times 10^{-2}$ 78 ± 11 10.6 ± 5.8 9.7 ± 5.6	Input prior [Bq]Best fit [Bq] 3282 ± 340 3009 $[0 - 0.3]$ 0.129 $= 5.9 \times 10^{-4}$ - $(8.5 \pm 4.9) \times 10^{-6}$ 7.4×10^{-6} $= 2.0 \times 10^{-4}$ - $(0 \pm 8) \times 10^{-2}$ 0 $(0 \pm 22) \times 10^{-2}$ 1.5×10^{-2} 0 ± 1.3 0.13 0 ± 0.9 0 $[500 - 1500]$ 776 216 ± 24 136 39 ± 4 41.5 $[0 - 5] \times 10^{-2}$ 1.47×10^{-2} 78 ± 11 45.0 10.6 ± 5.8 4.9 9.7 ± 5.6 43.0

-

 \sim

r bulk | Data) 0.03

[bg] 0.03 0.025 0.02

A 0.015 0.005

²²⁶Ra PMT glass [Bq]

²³²Th PMT glass [Bq]

²³²Th SSS bulk [Bq]

0.005

50

30

[ZH] sala 10.012 0.025 0.02 0.015 0.015

0.005

Systematic Uncertainties ⁴²K Activity

TABLE IV.	Systematic	uncertainties	for	$^{42}\mathrm{Ar}/^{42}\mathrm{K}$	activity
measurement	t.				

Systematics	Fraction of activity
Fit uncertainty	2%
MC simulation	3%
LAr mass	3.4%
Nuclear physics	4.7%
Energy scale	< 0.8%
Topology correction	13%
Subtotal	14.7%
Age of LAr	1%

