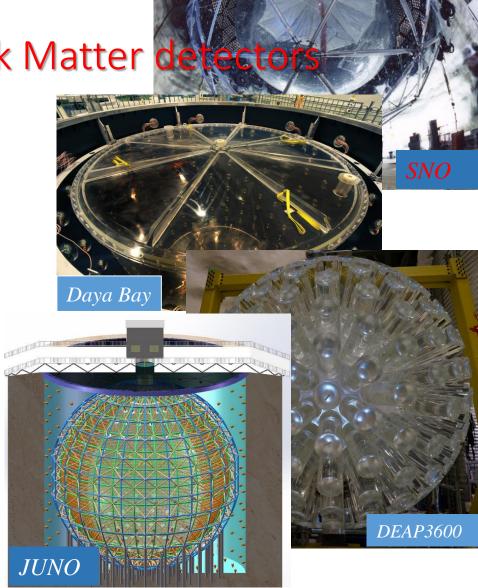


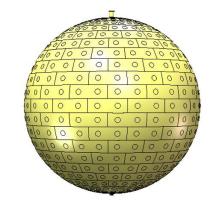
A convenient approach to determine U/Th in acrylic to sub-ppt level

Chuanya Cao


Institute of High Energy Physics LRT2019, 22 May, Spain

caocy@ihep.ac.cn

Acrylic in Neutrino/Dark Matter delecto


Experiments	Parameters
SNO	1000 t heavy-water / 6m radium 30t sphere vessel
Daya Bay	8 × 20t LS(Gd) / 1.5m radium vessel
DEAP3600	3.6t liquid Argon / 0.85m radium vessel
JUNO	20000t LS / 17m radium 566t sphere vessel

- Good light transmittance
 90-92% in air
- Good chemical compatibility
- Good mechanical strength
- Good Workability

Widely used in dark matter and neutrino experiment

Radioactivity Requirement

Requirement of acrylic in different experiment

ppt:10⁻¹²g/g

	U238	Th232
SNO	7ppt	2ppt
DEAP3600	0.3ppt	1.3ppt
JUNO	1ppt	1ppt

JUNO has a 566t acrylic sphere made of over 600 pieces. A highly sensitive and fast approach to measure U/Th in acrylic is desired to control the background in production.

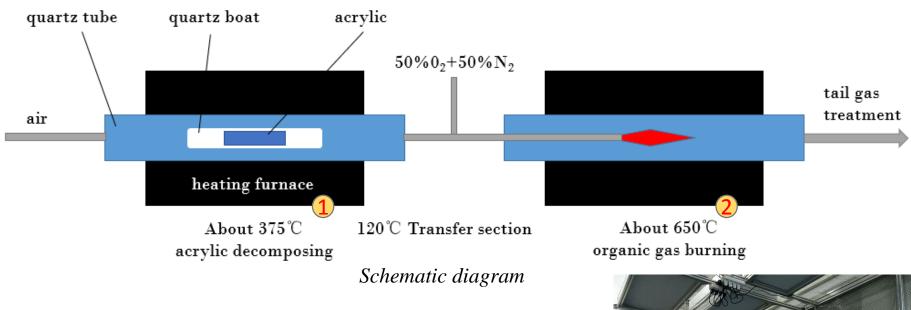
Methods for ppt U/Th level measurement of acrylic

	Acrylic mass	Sensitivity (U/Th)	Experiment	Ref.
NAA + HPGe	~ 20 g	<0.5 ppt	Milano Bicocca	[1]
PMMA vaporization + Alpha spectroscopy	~25kg	<1 ppt	SNOLAB	[2]
PMMA vaporization + HPGe	~10kg	<1 ppt	SNO&DEAP3600	[3]
PMMA vaporization + ICP- MS	~5kg	<1 ppt	SNOLAB	[2]

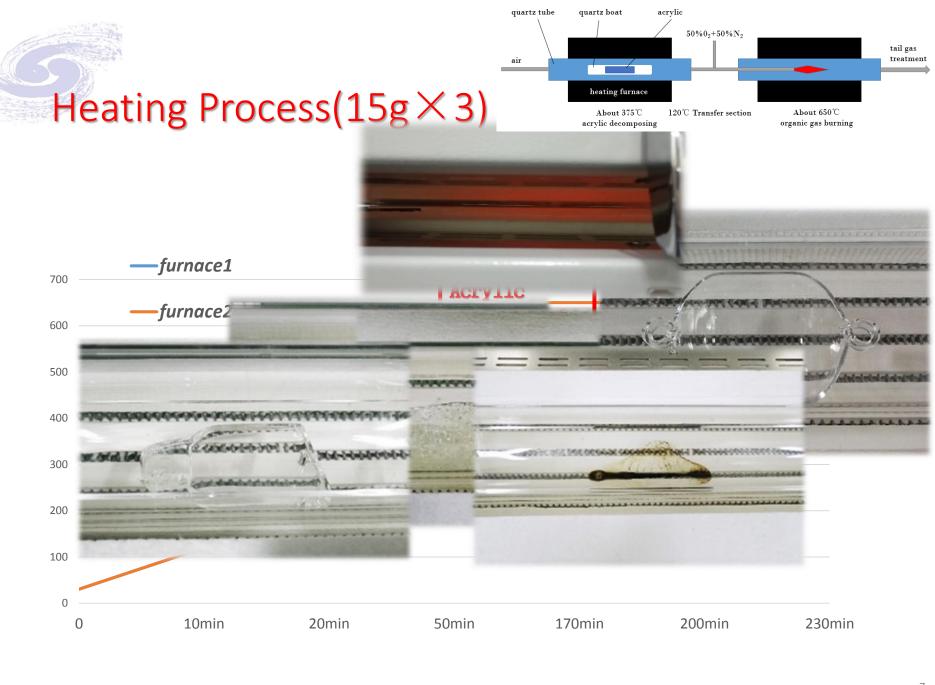
[1] Monica S., "Review on Neutron Activation

Analysis"https://indico.cern.ch/event/716552/sessions/310934/attachments/1848163/3033363/MonicaSisti LRT2019.pdf Retrieved 11 May 2019

- [2] Earle, E.D., Deal, R., Gaudette, E., Polycast Acrylic Sheets (SNO Communication). Jan. 24 1994. SNO-STR-93-042
- [3] Corina, M.N. Radiopurity measurement of acrylic for the DEAP-3600 dark matter experiment. Jan. 22 2014.


Measuring instrument

- ICP-MS
 - Super high sensitivity
 - Fast measurement
- Difficulties
 - How to get proper samples can be tested by ICP-MS
 - Contamination in sample preparation
- Pretreatment Strategies:
 - Dissolving acrylic directly
 Contamination from pretreatment (micro-wave digestion) is several ppt
 - Vaporizing acrylic and dissolving U/Th
 No organic component left
 U/Th concentrated


ICP-MS

Acrylic decomposition equipment

- Furnace1 for decomposing the acrylic
- Furnace2 for burning the organic gas from furnace1

Tests on ICP-MS

- Collection efficiency calibration
- Blank test
- U/Th concentration of acrylic

Collection efficiency calibration

Using ²²⁹Th solution (2%HNO₃) as the standard solution to do recovery efficiency test
 Not exist in nature

Background from ²²⁹Th solution

Unit: ppt	²³⁸ U	²³² Th
0.2 ppt Th229	0.02 ± 0.01	0.03 ± 0.01
1 ppt Th229	0.04 ± 0.01	0.10 ± 0.01

Collection efficiency test: ~60% for acrylic (tested every time)

	0	1	2	3	4	
eff. ²²⁹ Th	36.2 ± 0.4	65.6±0.6	69.7 ± 1.0	60.9 ± 1.3	88.7±4.7	

10 seconds \longrightarrow 3mins \times 3

Blank test

Quartz boat

Contamination sources

Quartz boat

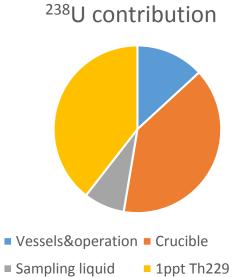
229Th solution

Sampling liquid (2% ultra pure HNO₃ solution)

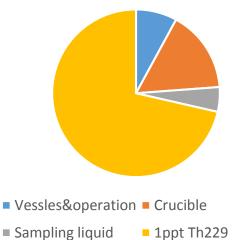
Residue collecting operation

• • •

Unit: ppt	²³⁸ U	²³² Th
No.1	0.04 ± 0.01	0.03 ± 0.01
No.2	0.04 ± 0.01	0.03 ± 0.01
No.3	0.05 ± 0.01	0.02 ± 0.01


Blank test for quartz boat

²³⁸ U	²³² Th
<0.01ppt	<0.01ppt


Blank test for 2% ultra pure HNO_3 solution

Background level

Contamination Sources		²³⁸ U(ppt)	²³² Th(ppt)
No.1	PFA vessel, 2% HNO ₃ , Transferpettor	0.01±0.01	0.01±0.01
No.2	No.1 & Crucible	0.04±0.02	0.04 ± 0.02
No.3	No.1 & 0.2ppt ²²⁹ Th std	0.02±0.01	0.03 ± 0.01
No.4	No.1 & 1ppt 229Th std	0.04±0.01	0.10 ± 0.01

Most of the background comes from ²²⁹Th

tracer agent

U/Th content of acrylic

Result =
$$(B - C)/eff - A$$

A:U/Th from vessels/sampling liquid/crucible

B:acrylic

C:229Th solution

eff.: collection efficiency

Result: Blank and collection efficiency are corrected

Unit: ppt	²³⁸ U	²³² Th
No.1 unwashed normal acrylic	3.17 ± 0.16	6.93 ± 0.47
No.2 washed normal acrylic	1.35 ± 0.12	3.64 ± 0.24
No.3 potential candidate for JUNO	0.29 ± 0.05	0.54 ± 0.18

Summary

- A convenient method for sub-ppt ²³⁸U/²³²Th acrylic measurement is developed
 - Background level ~ 0.1ppt
 - Sensitivity <1ppt
 - Quick testing 1~2 days per sample

Application

- Extend to other organic materials
- Plan to use this method in batch quality test for JUNO

Thank you!