Final results of the CUPID-0 Phase I experiment

Mattia Beretta

On behalf of the CUPID-0 collaboration

The first enriched scintillating bolometer $\beta\beta$ experiment

2νββ

$$(A,Z) \to (A,Z+2) + 2e^- + 2\overline{\nu}$$

Ονββ:

$$(A,Z) \to (A,Z+2) + 2e^{-}$$

$$Q_{\beta\beta} = (2997 \pm 0.3) \text{ keV}$$

Performing resolution
At the Q value

Low Background
Few counts expected

CUPID-0 Detector

Scintillating Zn⁸²Se crystals.

Bolometric Ge Light detectors

Light signal:

particle
identification

26 ZnSe crystals

Heat signal:

bolometric high

resolved output

- 24 enriched in 82Se (95%)
 - + 2 naturals
- Total mass = 10.5 kg
 - 82 Se mass = 5.17 kg (3.8·10²⁵ ββ emitters)

Vikuiti Reflector More collected light

> NOSV Copper Surface cleaned

2017

Commissioning

June 2017 – December 2018

2019

Phase I 560 d with 74% of livetime

Preparation of Phase II

⁵⁶Co Energy Calibration

²³²Th Energy Calibration

System manteinance

AmBe source βγ Shape Characterization in the ROI

ββ physics

Exposure: 9.95 kg·y

Calibrations

²³²Th Energy Calibration

- Periodic Bolometer calibration and light detector intercalibration
- Response function: Double Gaussian
 - Also observed in other bolometers

⁵⁶Co Energy Calibration

- Check of the energy reconstruction
- Evaluation of FWHM energy resolution @ 82Se Q

FWHM @ Q_{ββ} (20.0±0.6) keV

Total Background spectrum

0νββ ROΙ

$$BKG = (3.2 \pm 0.4) \cdot 10^{-2} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

Basic Selections

Rejection of "non-particle-like" events through pulse shape on thermal pulses

Multiplicity (M)

Anti-coincidence between crystals $(\Delta T=20ms)$

Background - Alpha Rejection

$$BKG = (3.2 \pm 0.4) \cdot 10^{-2} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

$$BKG = (1.3 \pm 0.2) \cdot 10^{-2} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

Light Signal depends on particle type

Selection based on light shape parameter

Background - Delayed coincidences rejection

Delayed 212 Bi- 208 Tl (α/β) coincidences

Selection of ²¹²Bi **α** events

- α pulse shape
- 2.0 MeV<Energy<6.5MeV
 - Degraded tag

→ Veto for 7 half-life

Background - Delayed coincidences rejection

$$(3.5^{+1}_{-0.9}) \cdot 10^{-3} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

Lowest background ever measured with a calorimeter

Total cut efficiency: (86±1)%

$$T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr}$$
 @90% C.I.

A complete model of the background sources

Divided according to multiplicity and particle type

- M2 / M2 sum (Σ 2)
- M>3 (to constraint Muons)

Background source identification

Background sources

• Localization in the detector

• Depth of contamination

Surface

Exponential profile

Radiation type

Natural Chains

• Fathers + saecular equilibrium breaking points

Single isotopes

• 40K, 54Mn, 65Zn, 60Co, ...

Muons

Monte Carlo simulations

Generation

Detection

MODEL

• 33 background sources

 232 Th (224 Ra $\rightarrow ^{208}$ Pb)

Linear combination
Coefficients = Activities

PRIORS

 $^{238}\text{U} (^{226}\text{Ra} \rightarrow ^{210}\text{Pb})$

- Experimental signatures
 - $-\alpha/\alpha$ coincidences

- Previous contamination measurements
 - Reflective foil

Daughter/parent gives a prior on surface vs bulk contaminations

Reconstruction results: M1 Spectra

- Full spectrum reconstruction
- Peaks and continuum are well modelled

The α – β/γ separation allows to disentangle the different contributions

Reconstruction results: M2 spectra

- Both α and β/γ regions are well modelled in peaks and continuum
 - The surface/bulk prior is a key ingredient

Some differences on the Bi-Po pileup

• Imperfect reconstruction of the deposited energy

²¹⁴Bi→²¹⁸Po ²¹²Bi→²¹²Po

Result: Beta/Gamma spectrum

2νββ is a dominant contribution

Possibility to perform detailed study on this decay

Phase II upgrade

- µ are the main residual background
 - Installation of μ-veto

No reflective foil

Sensitivity to
 M2 α events

New clear Cu Shield

- Thermalization
- Additional shielding

NOW COOLING

CUPID 0: current results and future perspectives

- CUPID-0 is the first large array of enriched scintillating bolometers
- We reached the lowest background level achieved with bolometric experiments:

$$(3.5^{+1}_{-0.9}) \cdot 10^{-3} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

- A complete background model has been developed
 - Major ROI background (208 Tl β events) is reduced with delayed cut
 - Muons give 44% of residual counts
- Phase II upgrade focused on background improvement
 - Muon veto installed
 - No Reflective foil: M2 alpha events direct tagging
 - Additional shielding

BackUp Slides

Double beta decay ($\beta\beta$)

0νββ:

$$(A,Z) \rightarrow (A,Z+2) + 2e$$

$$m_{\nu} \neq 0$$
$$\nu \equiv \overline{\nu}$$

- Prohibited in the Standar Model ($\Delta L=2$)
- Limits: $T^{0v}_{1/2} > 10^{24} 10^{25} \text{ y}$

$$(A,Z) \rightarrow (A,Z+2) + 2e-+2v$$

• Predicted and detected

Measuring the two electron energy

Performing resolution

• At 2-3 MeV (Q_{value} of different isotopes)

Low Background

Observing few counts above background

Experimental search for 0vββ

Experimental sensitivity

Maximum measurable half-life at a given C.L.

$$S_{0\nu} \propto \sqrt{\frac{M \cdot T}{B \cdot \Delta}}$$

Crytical experimental parameters:

- Isotope Mass (M)
- FWHM energy resolution (Δ)
- Background (B)

High purity materials (< ppb radioactive contaminations) Rejection techniques Mass scalability at low cost and high isotopic abundance

 Δ of few % at Q_{value} to avoid the $2\nu\beta\beta$ induced background

Ratio $0\nu\beta\beta$ signal/ $2\nu\beta\beta$ background

$$\frac{S^{0\nu}}{B^{2\nu}} = \frac{m_e}{7} \frac{T_{1/2}^{2\nu}}{T_{1/2}^{0\nu}} \frac{Q_{\text{value}}^5}{\Delta^6}$$

The first enriched scintillating bolometer $\beta\beta$ experiment

Demonstrating achievable Background rejection

Precision measurements on ${}^{82}\text{Se}~\beta\beta$

 82 Se - $Q_{\beta\beta}$ = (2997±0.3) keV

Heat:

bolometric high resolved output

Light:

particle identification

Zn⁸²Se crystals

Fist large mass Zn⁸²Se enriched crystals ever grown.

- 26 ZnSe crystals
 - 24 enriched in 82 Se (95%) + 2 naturals
- Total mass = 10.5 kg
 - 82Se mass = 5.17 kg
 - $-3.8\cdot10^{25}\,\beta\beta$ emitters

Material surrounding the crystal

Copper structure

NOSV ultra-pure copper

 Cleaning procedure vs surface contaminations

Vikuiti Reflector

- Enhances the light output
- Low Th/U contaminations measured

Ge Bolometric Light Detector

- SiO₂ anti-reflective coating
- Sensible to few keV energy deposition

The Cryostat

- Oxford 1000 ³He/⁴He diluition cryostat (CUORE-0)
- Radially divided by the Roman Lead shield:
 - CryoExt, RomanPb, CryoInt

The cryostat contamination have been evaluated from experimental data

Detector Performances

²³²Th Energy Calibration

- Bolometer calibration and light detector intercalibration
- Response function evaluation

Detector Performances

⁵⁶Co Energy Calibration

- Check of the energy reconstruction
- Evaluation of FWHM energy resolution @82Se Q

FWHM @ Q_{ββ} (20.0±0.6) keV

Major contribution is the crystal quality (average baseline FWHM ~5 keV)

Shape parameters cut

Remove energy-dependency of the shape parameters for energy-independent cuts

Efficiency and signal/noise as figure of merit to choose cut level

Evaluation of efficiency

Heat

• Fit of ⁶⁵Zn Line before/after cuts applied

Light

- Cut on events with M>6
 - Muonic showers, almost pure beta/gamma sample

$0\nu\beta\beta$ search

- 65Zn: cosmogenically activated
- ⁴⁰K and ²⁰⁸Tl: natural radioactivity
- $2\nu\beta\beta$ is the dominant background

Basic Selections

- Rejection of "non-particle-like" events through pulse shape on thermal pulses
- Anti-coincidence between crystals ($\Delta T=20$ ms)
 - Multiplicity selection

$$BKG = (3.2 \pm 0.4) \cdot 10^{-2} \text{ cnts/(keV} \cdot \text{kg} \cdot \text{y})$$

Light Signal depends on particle type

Selection based on light shape parameter

Background - Delayed coincidences rejection

Selection made
Delayed α coincidence ²¹²Bi-²⁰⁸Tl rejection

Veto any event succeeding a 212 Bi α event in a 7 half-life window

- α pulse shape
- 2.0 MeV < Energy < 6.5 MeV
 - Both peak and surface events

Background model

• A full model is needed to undestand the background components

EXPERIMENTAL DATA

Particle type α events β/γ events

Multiplicity (M)
Crystals triggered in
20ms

Combined with a Bayesian analysis

O(10nm)

Cryostat

Bulk

Cu Holder

CryoInt

Multiplicity

Roman Lead

Cryo Ext

O(10mm)

Shape cut for Background Model

$$SP = \frac{1}{\omega_r} \sqrt{\sum_{i=i_M}^{i_M + \omega_r} (y_i - A \cdot S_i)}$$

y_i = filtered light pulse

A = maximum amplitude

S_i = filtered average pulse

 i_{M} = position of the maximum and

 w_r = right width at half maximum of S_i

Optimized cut:

$$SP = \mu_{\alpha}(E) - 3 \times \sigma_{\alpha}(E)$$

Parameter calculates for SP>6 (pure beta gamma)

Total Fit Results

Component	Mass (kg)	Source	Index	Activity (Bq/kg)
Crystals	10.5	$2\nu\beta\beta$	1	$(9.96 \pm 0.03) \times 10^{-4}$
		$^{65}\mathrm{Zn}$	2	$(3.52 \pm 0.06) \times 10^{-4}$
		$^{40}\mathrm{K}$	3	$(8.5 \pm 0.4) \times 10^{-5}$
		$^{60}\mathrm{Co}$	4	$(1.4 \pm 0.3) \times 10^{-5}$
		$^{147}\mathrm{Sm}$	5	$(1.6 \pm 0.3) \times 10^{-7}$
		$^{238}U^{-226}Ra$	6	$(5.51 \pm 0.10) \times 10^{-6}$
		226 Ra $^{-210}$ Pb	7	$(1.54 \pm 0.02) \times 10^{-5}$
		²¹⁰ Pb ²⁰⁶ Pb		$(7.05 \pm 0.16) \times 10^{-6}$
		$^{232}\text{Th}-^{228}\text{Ra}$		$(2.74 \pm 0.10) \times 10^{-6}$
		²²⁸ Ra- ²⁰⁸ Pb		$(1.20 \pm 0.03) \times 10^{-5}$
		$^{235}U^{-231}Pa$		$(5.3 \pm 0.7) \times 10^{-7}$
		$^{231}\text{Pa}-^{207}\text{Pb}$	12	$(7.8 \pm 0.4) \times 10^{-7}$
Holder	3.10	$^{54}\mathrm{Mn}$	13	$(2.2 \pm 0.3) \times 10^{-4}$
CryoInt (a)	36.9	$^{232}{ m Th}$	14	$< 4.5 \times 10^{-5}$
		$^{238}{ m U}$	15	$(7 \pm 3) \times 10^{-5}$
Cryoini ()	30.9	$^{40}\mathrm{K}$	1 2 3 4 5 6 7 8 9 10 11 12 13	$(3.0 \pm 0.6) \times 10^{-3}$
		$^{60}\mathrm{Co}$		$(6.8 \pm 1.3) \times 10^{-5}$
IntPb	202	$^{232}{ m Th}$	18	$< 6.3 \times 10^{-5}$
		$^{238}{ m U}$	19	$< 7.3 \times 10^{-5}$
CryoExt	832	⁶⁰ Co	20	$(2.6 \pm 0.9) \times 10^{-5}$
$ExtPb\ (^b)$	24694	²³² Th	21	$(4.3 \pm 0.6) \times 10^{-4}$
		$^{238}{ m U}$	22	$(2.5 \pm 1.2) \times 10^{-4}$
		$^{40}\mathrm{K}$	23	$(2.8 \pm 0.8) \times 10^{-3}$
		$^{210}{ m Pb}$	24	7.8 ± 0.3

- (a) CryoInt sources include also a minor contribution from Holder bulk contaminations.
- (b) ExtPb is used to represent also the CryoExt sources, that exhibit degenerate spectra.
- (c) Reflectors include also a contribution from light detectors, and from copper surface and other parts directly facing the ZnSe crystals.

Component	Surface (cm ²)	Source	Index	Activity (Bq/cm ²)
Crystals	2574	$^{226} Ra^{-210} Pb^{-0.01} \mu m$ $^{228} Ra^{-208} Pb^{-0.01} \mu m$ $^{226} Ra^{-210} Pb^{-10} \mu m$ $^{228} Ra^{-208} Pb^{-10} \mu m$	25 26 27 28	$(2.63 \pm 0.15) \times 10^{-8}$ $(6.5 \pm 1.1) \times 10^{-9}$ $< 2.3 \times 10^{-9}$ $(4.2 \pm 1.6) \times 10^{-9}$
Reflectors (c)	2100	$^{232}{ m Th}{-}10\mu{ m m}$ $^{226}{ m Ra}{-}^{210}{ m Pb}{-}10\mu{ m m}$ $^{210}{ m Pb}{-}^{206}{ m Pb}{-}10\mu{ m m}$ $^{210}{ m Pb}{-}^{206}{ m Pb}{-}0.01\mu{ m m}$	29 30 31 32	$< 7.3 \times 10^{-10}$ $(8.7 \pm 1.3) \times 10^{-9}$ $(1.0 \pm 0.5) \times 10^{-8}$ $(1.43 \pm 0.02) \times 10^{-7}$
Muons	Flux in units of $\mu/(\text{cm}^2\text{s})$		33	$(3.7 \pm 0.2) \times 10^{-8}$

Surface
Exponential
profile

ROI contaminations

After time veto of 7 livetimes

Component	ROI_{bkg} rate $(10^{-4} counts/(keV kg yr))$	Source	ROI_{bkg} rate $(10^{-4} counts/(keV kg yr))$	
Crystals	$11.7 \pm 0.6 ^{\ +1.6}_{\ -0.8}$	²³² Th– bulk ²³² Th–surf ²³⁸ U–surf	$3.4 \pm 0.6 \pm 0.1$ $3.4 \pm 0.5 \stackrel{+1.0}{_{-0.7}}$ $4.9 \pm 0.3 \stackrel{+1.3}{_{-0.3}}$	
Reflectors & Holder	$2.1 \pm 0.3 {}^{+2.2}_{-1.0}$	²³² Th ²³⁸ U	< 3.3 $1.8 \pm 0.3 \stackrel{+1.4}{_{-0.9}}$	
Cryostat & Shields	$5.9 \pm 1.3 ^{\ +7.2}_{\ -2.9}$	²³² Th ²³⁸ U	$3.5 \pm 1.3 {}^{+7.4}_{-3.3} 2.4 \pm 0.4 {}^{+4.1}_{-0.7}$	
Subtotal	$19.8 \pm 1.4 ^{+6.6}_{-2.7}$			
Muons	$15.3 \pm 1.3 \pm 2.5$			
$2\nu\beta\beta$	$6.0 \pm 0.3~(<3 \times 10^{-6}~\mathrm{counts/(keV~kg~yr)}$ in [2.95–3.05] MeV range)			
Total	$41 \pm 2 {}^{+9}_{-4}$			
Experimental	$35 \begin{array}{c} +10 \\ -9 \end{array}$			

• Different impact on the continuum