Low-Background Techniques Applied within the MAJORANA DEMONSTRATOR Experiment

Vincente Guiseppe
University of South Carolina
On behalf of the MAJORANA Collaboration

Low Radioactivity Techniques

23 May 2019
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD:
Kara Keeter

Duke University, Durham, NC, and TUNL:
Matthew Busch

Joint Institute for Nuclear Research, Dubna, Russia:
Viktor Brudanin, M. Shirchenko, Sergey Vasilyev, E. Yakushev, I. Zhitnikov

Lawrence Berkeley National Laboratory, Berkeley, CA:
Yuen-Dat Chan, Alexey Drobizhev, Jordan Myslik, Alan Poon

Los Alamos National Laboratory, Los Alamos, NM:
Pinghan Chu, Steven Elliott, Ralph Massarczyk, Keith Rielage, Brandon White, Brian Zhu

Massachusetts Institute of Technology, Cambridge, MA:
Julieta Gruszko

National Research Center ‘Kurchatov Institute’ Institute of Theoretical and Experimental Physics, Moscow, Russia:
Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

North Carolina State University, Raleigh, NC and TUNL:
Matthew P. Green, Ethan Blalock

Oak Ridge National Laboratory, Oak Ridge, TN:
Fred Bertrand, Charlie Havener, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan:
Hiroyasu Ejiri

Pacific Northwest National Laboratory, Richland, WA:
Isaac Arnquist, Eric Hoppe, Richard T. Kouzes

Princeton University, Princeton, NJ:
Graham K. Giovanello

Queen’s University, Kingston, Canada:
Ryan Martin, Alex Pliounis, Vasundhara

South Dakota School of Mines and Technology, Rapid City, SD:
Brady Bos, Cabot-Ann Christofferson, Colter Dunagan, Tyler Ryther, Jared Thompson

Tennessee Tech University, Cookeville, TN:
Mary Kidd

Technische Universität München, and Max Planck Institute, Munich, Germany:
Tobias Bode, Susanne Mertens

University of North Carolina, Chapel Hill, NC, and TUNL:
Thomas Caldwell, Morgan Clark, Thomas Gilliss, Chris Hauke, Ryan Hagedus, Reyco Henning, David Hervas, Mark Howe, Eric Martin, Samuel J. Meijer, Gulden Othman, Jamin Rager, Anna Reine, John F. Wilkerson

University of South Carolina, Columbia, SC:
Frank Avignone, David Edwards, Vincente Guiseppe, David Tedeschi

University of South Dakota, Vermillion, SD:
Clay J. Barton, Mariano Lopez, Tupendra Kumar Oli, Wenqin Xu

University of Tennessee, Knoxville, TN:
Yuri Efremenko, Andrew Lopez

University of Washington, Seattle, WA:
Micah Buuck, Clara Cuesta, Jason Detwiler, Ian Guinn, Alexandru Hostiuc, Walter Pettus, Nick Ruof, Clint Wiseman

*students
MAJORANA DEMONSTRATOR

Searching for neutrinoless double-beta decay of 76Ge in HPGe detectors and additional physics beyond the standard model

Source & Detector: Array of p-type, point contact detectors
29.7 kg of 88% enriched 76Ge crystals

Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials

Operating underground at the 4850’ level of the Sanford Underground Research Facility
Operating in a low background regime and benefiting from excellent energy resolution

Initial Release:

PRL 120 132502 (2018)

Latest Release:

First unblinding of data
26 kg-yr of exposure

Neutrino 2018
arXiv:1902.02299

Median half-life sensitivity:

4.8×10^{25} yr

Full Exposure Limit:

$T_{1/2}^{0\nu} > 2.7 \times 10^{25}$ yr (90% CL)

Background index at 2039 keV in the lowest background configuration:

11.9 ± 2.0 cts/(FWHM t yr)

$4.7 \pm 0.8 \times 10^{-3}$ cts/(keV kg yr)
Beyond the Standard Model Searches

The low backgrounds, low threshold, high resolution spectra allows additional searches

Controlled surface exposure of enriched material to minimize cosmogenics

Excellent energy resolution: 0.4 keV FWHM at 10.4 keV

Ongoing effort on:
• low energy data cleaning, de-noising
• low energy cut development & efficiencies

Permits low-energy physics
pseudoscalar dark matter, vector dark matter, 14.4-keV solar axion, $e^{-} \rightarrow 3\nu$, Pauli Exclusion Principle

![Low energy spectra during commissioning (blue) and first low-background physics running (red)](image)

(red) The 90% UL on the pseudoscalar axionlike particle dark matter coupling

V.E. Guiseppe - LRT 2019
Beyond the Standard Model Searches

The low backgrounds, low threshold, high resolution spectra allows additional searches

First Limit on the direct detection of Lightly Ionizing Particles for Electric Charge as Low as $e/1000$

\[\Phi_{\text{LP}} (\text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}) \]

- **MAJORANA**
- **CDMS**
- **MACRO**
- **Kamiokande-II**
- **LSD**

The 90% UL on the Lightly Ionizing Particle flux with 1σ uncertainty bands

Search for Tri-Nucleon Decay:
A test of baryon number violation

\[T_{1/2} > 4.7 \times 10^{25} \text{ yr} \]

\[T_{1/2} > 4.9 \times 10^{25} \text{ yr} \]

V.E. Guiseppe - LRT 2019
MAJORANA Approach to Backgrounds

The detector: P-type point contact
- enrGe metal zone refined and pulled into a crystal that provides purification
- Limit above-ground exposure to prevent cosmic activation
- Slow drift of ionization charge carriers allows separation of multiple interactions inside a detector

Rejection of backgrounds
- Granularity: multiple detectors hit
- Pulse shape discrimination: no multiple hits, reject surface events
- **Ultra-pure materials with extremely low radio-isotope content to remove background radiation**
Background Rejection: Multi-Site Events

Benefit of P-type Point-Contact (PPC) style detectors for background rejection:

- Slow drift time of the ionization charge cloud
- Localized weighting potential gives excellent multi-site rejection

Amplitude of current pulse is reduced for a multi-site event compared to a single-site event of the same event Energy (A_E)

![Graphs showing single-site and multi-site events](image)

Tuned to accept 90% of single-site event

228Th Calibration Data

Negative values are multi-site

arXiv: 1901.05388
Background Rejection: Surface Alphas

Alpha background with degraded energies observed; charge trapped at passivated surface, slowly released into bulk: *delayed charge recover* (DCR)

Developing a model of the detector response
Cut with a parameter related to slope of tail after the rising edge

Suspect α contamination near point contact
\(^{210}\)Po on contact pin or PTFE bushing from \(^{222}\)Rn exposure

Tuned to accept 90% of single-site event
Material purity was central to the Majorana Demonstrator design

The efforts of the community were very useful in our selection of components

i.e. radiopurity.org, the EXO assay paper [NIM A591 (2008) 490–509]

Initial background budget based our own certification of candidate materials
Pb Shielding

Pb shielding material selected from two sources based on initial assays
Virgin Doe Run Pb and bricks from a decommissioning low-background facility at U. Washington
Initial screening assay by GDMS: <32 uBq/kg Th, <110 uBq/kg U

New production of virgin Doe Run Pb
Low-BG facility at U Washington

Over 6800 Pb bricks processed through our dedicated Pb cleaning facility
Surface cleaning with pure acetic acid soak and scrub, then HNO3 + H2O2 etch

Processed 50 bricks/day (includes unpacking, rinses, drying, triple bagging, packing)

Final assay certification of sampled bricks after cleaning:
Average:
5.3 +/- 5.3 μBq/kg Th
36 +/- 25 μBq/kg U

V.E. Guiseppe - LRT 2019
Commercial Cu Shielding

Outer Cu shielding made from commercial C10100 (OFHC) plates; 0.6-cm surface layer removed

Selected acceptable material after assay of traceable starting material (cake) and finished (rolled) product

Starting “cake” material from Aurubis (Germany)
Rolled into plates by KME (Germany)
Rough cut by Southern Copper (USA)

Cu Plates cleaned and etched before assembly

Assay results acceptable

1.1(2) μBq/kg 232Th
1.25(3) μBq/kg 238U

Cake Sample

Assay results acceptable

Roller Sample

NIM A828 (2016) 22–36
Electroformed Cu Production

MAJORANA operated 10 baths at SURF on the 4850’ level and 6 baths at a shallow UG site at PNNL

Assay results of bulk

<0.1 µBq/kg 232Th
<0.1 µBq/kg 238U

Inner Cu Shield

Cryostats

NIM A828 (2016) 22–36
MAJORANA Cu Part Cleaning

After machining, all Cu parts cleaned of surface contamination based on established procedures

Surface etch (CuSO$_4$ + H$_2$O$_2$) and passivation

modified from Hoppe et al. NIM A579 (2007) 486–489
Cables and Connectors

The signal and HV cables were produced by Axon’ using certified materials:
- Dupont™ and Daiken Neoflon™ FEP dielectric and outer jacket from two different stocks
- California fine wire central AWG34.5 and AWG40.5 conductors
- Axon’ AWG50 ground shield

Modified manufacturing steps to mitigate contamination and enforced cleanliness protocols of final products.

Raw materials prior to cable production and finished cables assayed by ICPMS at PNNL.

Custom connectors after survey of commercial products:
- Mil-Max® gold-plated brass pin receptacles without BeCu contact springs
- Vespel® housing to secure pins and sockets

Leached with HNO₃, stored in N₂ environment.

SnAg alloy solder of cables to connectors; FEP tubing for strain relief.

Full-body assay of complete connector:
- 0.52 μBq/ch Th
- 1.64 μBq/ch U

NIM A828 (2016) 22–36
Front End Electronics

Custom front end board designed with component materials selected from ICPMS assay

- Fused silica substrate with a photolithographic pattern for conductive traces and resistance
 - Highly polished wafers cleaned before photolithography in DI water and 10% HNO₃ decreased U/Th levels
 - Thicker traces (1-10 µm) deposited and removed for assay
- JFET affixed using assayed silver epoxy
- Cables bonded with silver epoxy; ultrasonically-drilled holes for strain relief

ICPMS assay of fabricated boards to evaluate contamination during the production process

Dissolved in a microwave reaction system with HNO₃ and HF solutions

- Ti, Au traces (pulser, drain, source, feedback)
- Gate (to detector)

Full-body assay: 6.5 mBq/kg Th
10.6 mBq/kg U

V.E. Guiseppe - LRT 2019
NIM A828 (2016) 22–36
Various plastics assayed and certified for low-background use
PTFE (NXT-85) detector supports and electrical insulators
PTFE cryostat seals and calibration track tubing
PEEK (Victrex®) and Vespel® for their load-bearing rigidity

After in-house machining, surfaces cleaned by 72-hr HNO₃ leach

Parylene coating of threaded hardware as anti-galling agent
Detector Assembly

Dedicated glove boxes with a purged N₂ environment for detector assembly and material storage
Improved MAJORANA Cu Part Cleaning

Maintained an validation campaign to verify the finished parts remained pure

Concerned that various handling conditions introduces unique pathways for surface contamination of U/Th.
Should contamination occur, most sensitive to the large mass, large surface area components
Contamination of parts during processing confirmed

Results not acceptable for the inner Cu shield (which had not been processed yet!)
Predicted the depth of Cu removal to remove surface contamination
Revised procedures and adopted additional QA requirements.

Machined blocks essentially back to starting stock radiopurity:
Acceptable for inner shield plates

Detector mounting components also improved, and acceptable

Study is ongoing to further identify pathways for surface contamination

See C. Christofferson LRT 2017
arXiv:1711.10361
Background Model Development

Initial assay measurements with early simulations with assumed simulations and expected detector configuration

Initially predicted \(< 2.2 \text{ cts/(FWHM t y)}\) at \(Q_{\beta\beta}\)

Measured Background: \(11.9 \pm 2.0 \text{ cts/(FWHM t yr)}\)

Reviewing new assay information, as-built geometry and simulations, detector configurations, and updated physics lists

Goals: Generate an updated assay-based model & Identify the residual backgrounds that survives PSD

Develop a background model to fit the observed energy spectra
- MaGe/Geant4 simulations with the as-built geometry of experiment
- ~4000 parts, ~70 unique designs
- ~40 component groups of related parts
Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby components

Based on the energy dependence of the peak intensities
Also Consistent with the low rate of detector coincidences observed

One observed coincidence between 583 and 2614 keV 208Tl-decay gammas. Factor of 5-10 more expected for sources near detectors

Identifying missing spectral components
Using coincidence studies to constrain spectral fits

Initial spectral fits missing strength at high energies
Background Model Development: An example

Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby components.

Based on the energy dependence of the peak intensities, a scaling of a distant component matches both the 239-keV and 2615-keV peak intensities from the ^{232}Th chain.

Distant \approx Outside of the Ge-detector array

T.F. Gilliss, UNC, PhD Dissertation 2019
Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby components. Based on the energy dependence of the peak intensities, a scaling of a nearby component scaled to the 239-keV peak underestimates the 2615-keV peak intensity from the 232Th chain. Nearby \approx Within of the Ge-detector array.
Cable and Connector Improvements

An upgrade of the Demonstrator planned for late 2019 to improve channel reliability and backgrounds

Connectors

Current design relies on radially mis-aligned pins for contact

- Implementing custom connectors that incorporate a twist pin mechanism

Cables

Original BG budget estimate: 2.2 uBq/kg Th; 145 uBq/kg U
- deemed acceptable, but limited sampling statistics many components based on limits.

Continued to work with Axon’ to produce clean cables
- Improved ICPMS assay at PNNL: Separation of Cu and FEP components from full body digestion
- Original cable BG may be higher than original estimate, running improved assay method on leftover cables
- Will deploy new cables with better confidence of actual background contribution

HV Connections

Better HV crimp at the detector and flange

- full-body assay
 - 0.52 μBq/ch Th
 - 1.64 μBq/ch U

- All components
 - 0.36 μBq/ch Th
 - 0.46 μBq/ch U

See M. Busch LRT 2017 arXiv:1712.04985
Summary and Outlook

MAJORANA DEMONSTRATOR construction complete, continuing to take data in its final configuration since Spring 2017

- Latest limit from 26 kg-yr exposure: $>2.7 \times 10^{25}$ yr (90% C.L.); sensitivity 4.8×10^{25} yr (90% C.L.) [arXiv:1902.02299]

Background Model under development

- Initial background fits are informing possible distribution of background sources
- Goal of a full background model consistent with the data - inform design of next generation experiments

Optimization of analysis cuts underway to improve background rejection

- New results and improved analysis reported later this year - stay tuned

Low background + low threshold + energy resolution allows for broad physics program

Planning an upgrade to improve channel reliability and background

- Expect to reach 50-70 kg-yr exposure with sensitivity in the range of 10^{26} yr half-life before decommissioning for LEGEND-200

Next Generation 76Ge: LEGEND is selecting the best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR

M. Green LRT 2019
Calibration and Energy Performance

Calibration of the detector array with a 228Th line source

Source is inserted and retracted for scheduled calibrations

Provides energy calibration, gain stability checks, and tuning of single-site (DEP) and multi-site (SEP) cuts

Excellent energy resolution attained improved by charge trapping and ADC nonlinearities corrections

Best achieved for 0νββ searches!
Background Rejection: PSA Performance

Last year of data: 12.7 kg-yr exposure

High DCR: alpha events

Signal region for DCR

Signal region for AvsE

Low AvsE: multi-site events

DS6a

V.E. Guiseppe - LRT 2019

Energy [keV]
Blindness Implementation

Data is split for statistical blindness:
Each 31 hours of open data is followed by 93 hours of completely blind data

Unblinding in phases to perform data quality and consistency checks
(<100 keV and multiple-detector events remain blind for other studies)

Open up outside the 1950-2350 keV background integration region [16 May 2018]

Open the background integration window and measure background index [23 May 2018]

Open the Q_{0ββ} region to set the 0νββ half-life limit [30 May 2018]
2017 $0\nu\beta\beta$ Result

First result announced in Oct. 2017
Only open data: 9.95 kg-yr ($^{\text{enrGe}}$)

\[\text{Median Sensitivity: } 2.1 \times 10^{25} \text{ yr (90\%CL)} \]

Full Exposure Limit
\[T_{1/2}^{0\nu} > 1.9 \times 10^{25} \text{ yr (90\% CL)} \]

Full Exposure Background
\[17.8 \pm 3.6 \text{ cts/}(\text{FWHM t yr}) \]

DS0-5b
Lowest background configuration
Active Exposure: 5.24 kg yr ($^{\text{enrGe}}$)
Background rate: \[4.0^{+3.1}_{-2.5} \text{ cts/}(\text{FWHM t yr}); \quad 1.6^{+1.2}_{-1.0} \times 10^{-3} \text{ counts/}(\text{keV kg yr}) \]

V.E. Guiseppe - LRT 2019
Background Index

<table>
<thead>
<tr>
<th></th>
<th>Lowest Background Configuration</th>
<th>Full Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 Result</td>
<td>(1.6^{+1.2}_{-1.0} \times 10^{-3}) cts/(keV kg yr)</td>
<td>6.7 ± 1.4 cts/(keV kg yr)</td>
</tr>
<tr>
<td>[PRL 120 132502 (2018)]</td>
<td>4.0^{+3.1}_{-2.5} cts/(FWHM t yr)</td>
<td>17.8 ± 3.6 cts/(FWHM t yr)</td>
</tr>
<tr>
<td>2018 Result</td>
<td>4.7 ± 0.8 \times 10^{-3} cts/(keV kg yr)</td>
<td>6.1 ± 0.8 \times 10^{-3} cts/(keV kg yr)</td>
</tr>
<tr>
<td></td>
<td>11.9 ± 2.0 cts/(FWHM t yr)</td>
<td>15.4 ± 2.0 cts/(FWHM t yr)</td>
</tr>
</tbody>
</table>
360 keV Background Integration Window

Simulated background PDFs, relative scaling based on assay results

Flat between 1950 keV and 2350 keV
 Remove ±5 keV around $Q_{\beta\beta}$ and prominent γ lines

Use counts in this window to estimate background level at $Q_{\beta\beta}$

Exclude:
2099 - 2109 keV
2113 - 2123 keV
2199 - 2209 keV
2034 - 2044 keV

$Q_{\beta\beta} = 2039$ keV
76Ge Processing

Dedicated facility in Oak Ridge to reduce the GeO\textsubscript{2}, zone refine the reduced metal, and recovery the scrap germanium.

Reduction and Zone Refining

98.3% yield of >47 Ω-cm Ge from 42.5 kg of enrGe (60.4 kg GeO\textsubscript{2})

ORTEC produced 35 enrGe detectors of total mass 29.7 kg

Includes material recovered by our team

Final yield of detectors is 70% (with R&D showing up to 85% is possible)

Best to date

Material stored and transported shielded from cosmic rays

Ge reduced in Chlorine gas

Zone Refining of Ge Metal
