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MAJORANA DEMONSTRATOR
Searching for neutrinoless double-beta decay of 76Ge in HPGe detectors 

and additional physics beyond the standard model
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Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV

Source & Detector: Array of p-type, point contact detectors 
29.7 kg of 88% enriched 76Ge crystals  

Low Background: 2 modules within a compact graded shield and 
active muon veto using ultra-clean materials

Operating underground at the 4850’ level of the Sanford Underground Research Facility



Energy [keV]
1000 2000 3000 4000 5000 6000

C
ou

nt
s/

(2
.5

 k
eV

 k
g 

yr
)

1−10

1

10

Data Cleaning, Muon, & Multiplicity Cuts
All Cuts

M
AJ

O
R

AN
A-

18
06

.0
6

1950 2000 2050 2100 2150 2200 2250 2300 2350
Energy [keV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C
ou

nt
s/

(k
eV

 k
g 

yr
)

All Cuts
90% C.L. Limit

M
AJ

O
R

AN
A-

18
06

.0
7b

2018 MAJORANA 0νββ Result
Operating in a low background regime and benefiting from excellent energy resolution
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Neutrino 2018 
arXiv:1902.02299

4.8⇥ 1025 yr

Full Exposure Limit:
T 0⌫
1/2 > 2.7⇥ 1025 yr (90%CL)

Median half-life sensitivity:

Initial Release:  

Latest Release:  
First unblinding of data 
26 kg-yr of exposure

11.9± 2.0 cts/(FWHM tyr)

Background index at 2039 keV in the 
lowest background configuration:

PRL 120 132502 (2018)

4.7± 0.8⇥ 10�3 cts/(keV kg yr)

Qββ = 2039 keV
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Beyond the Standard Model Searches
The low backgrounds, low threshold, high resolution spectra allows additional searches 

Controlled surface exposure of enriched material to minimize cosmogenics
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Permits low-energy physics 
• pseudoscalar dark matter, vector dark matter, 14.4-keV 
solar axion, e- → 3ν, Pauli Exclusion Principle

Excellent energy resolution: 0.4 keV FWHM at 10.4 keV 
Ongoing effort on: 

• low energy data cleaning, de-noising 
• low energy cut development & efficiencies

(red) The 90% UL on the pseudoscalar axionlike particle dark mater coupling
Low energy spectra during commissioning (blue) and first 
low-background physics running (red)

PRL 118 161801 (2017)



Beyond the Standard Model Searches
The low backgrounds, low threshold, high resolution spectra allows additional searches
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The 90% UL for two tri-nucleon decay-specific modes

PRL 120 211804 (2018)

First Limit on the direct detection of Lightly Ionizing 
Particles for Electric Charge as Low as e/1000

The 90% UL on the Lightly Ionizing Particle flux with 1σ uncertainty bands

Search for Tri-Nucleon Decay: 
A test of baryon number violation

T1/2 > 4.7⇥ 1025 yr

T1/2 > 4.9⇥ 1025 yr

PRD 99 07200 (2019)



MAJORANA Approach to Backgrounds
The detector: P-type point contact 

enrGe metal zone refined and pulled into a crystal that provides 
purification 
Limit above-ground exposure to prevent cosmic activation 
Slow drift of ionization charge carriers allows separation of multiple 
interactions inside a detector 

Rejection of backgrounds 
Granularity: multiple detectors hit  
Pulse shape discrimination: no multiple hits, reject surface events 
Ultra-pure materials with extremely low radio-isotope content to 
remove background radiation
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γββ γ

Multiple scattersSingle-site event

See F.T. Avignone 
LRT 2019



Background Rejection: Multi-Site Events
Benefit of P-type Point-Contact (PPC) style detectors for background 
rejection: 

Slow drift time of the ionization charge cloud 
Localized weighting potential gives excellent multi-site 
rejection 

Amplitude of current pulse is reduced for a multi-site event  
compared to a single-site event of the same event Energy (AvsE)
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γββ

Multi-site eventSingle-site event

228Th Calibration Data 

Negative values  

are multi-site

Single-Site (0νββ-like) 

accepted

Multi-Site (γ-like) 

rejected

arXiv: 1901.05388

Tuned to accept 90% of single-site event
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Background Rejection: Surface Alphas 
Alpha background with degraded energies observed; charge trapped at passivated surface, slowly released 
into bulk: delayed charge recover (DCR) 

Developing a model of the detector response 
Cut with a parameter related to slope of tail after the rising edge
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Suspect α contamination near point contact  
210Po on contact pin or PTFE bushing from 
222Rn exposure

alphas

Tuned to accept 90% of single-site event



Achieving Ultra-Pure Materials
Material purity was central to the Majorana Demonstrator design  

The efforts of the community were very useful in our selection of components 
i.e. radiopurity.org, the EXO assay paper [NIM A591 (2008) 490–509] 

Initial background budget based our own certification of candidate materials
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http://radiopurity.org


Pb Shielding
Pb shielding material selected from two sources based on initial assays 

Virgin Doe Run Pb and bricks from a decommissioning low-background facility at U. Washington 
Initial screening assay by GDMS: <32 uBq/kg Th, <110 uBq/kg U
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New production of virgin Doe Run Pb Low-BG facility at U Washington

Over 6800 Pb bricks processed through our dedicated Pb cleaning facility
Surface cleaning with pure acetic acid soak and scrub, then HNO3 + H2O2 etch 

Final assay certification of 
sampled bricks after cleaning:

Processed 50 bricks/day 
(includes unpacking, rinses, drying, triple bagging, packing)

Average: 
5.3 +/- 5.3 μBq/kg Th
36 +/- 25 μBq/kg U

Lead Bricks

NIM A828 (2016) 22–36 



Commercial Cu Shielding
Outer Cu shielding made from commercial C10100 (OFHC) plates; 0.6-cm surface layer removed 

Selected acceptable material after assay of traceable starting material (cake) and finished (rolled) product 
Starting “cake” material from Aurubis (Germany) 
Rolled into plates by KME (Germany) 
Rough cut by Southern Copper (USA)
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Cake Sample

Rolled Sample

Cu Plates cleaned and etched 
before assembly

Assay results acceptable 
1.1(2) µBq/kg 232Th 
1.25(3) µBq/kg 238U

Outer Cu 
Shield

NIM A828 (2016) 22–36 
~10”

2.5”



Electroformed Cu Production
MAJORANA operated 10 baths at SURF on the 4850’ level and 6 baths at a shallow UG site at PNNL
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Electroforming Baths in TCR Flattened plateEF copper after turning on lathe

Inner Cu 
Shield

Cryostats

Assay results of bulk  
<0.1 µBq/kg 232Th 
<0.1 µBq/kg 238U

NIM A828 (2016) 22–36 



MAJORANA Cu Part Cleaning
After machining, all Cu parts cleaned of surface contamination based on established procedures  

Surface etch (CuSO4 + H2O2) and passivation
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modified from Hoppe et al. 
NIM A579 (2007) 486–489



Cables and Connectors
The signal and HV cables were produced by Axon’ using certified materials 

DupontTM and Daiken NeoflonTM FEP dielectric and outer jacket from two different stocks 
California fine wire central AWG34.5 and AWG40.5 conductors 
Axon’ AWG50 ground shield 
Modified manufacturing steps to mitigate contamination and enforced cleanliness 
protocols of final products 
Raw materials prior to cable production and finished cables assayed by ICPMS at PNNL 

Custom connectors after survey of commercial products 
Mil-Max® gold-plated brass pin receptacles without BeCu contact springs 
Vespel® housing to secure pins and sockets 

Leached with HNO3, stored in N2 environment 
SnAg alloy solder of cables to connectors; FEP tubing for strain relief 
Full-body assay of complete connector:
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0.52 μBq/ch Th 
1.64 μBq/ch U

NIM A828 (2016) 22–36 



Front End Electronics
Custom front end board designed with component materials selected from 
ICPMS assay 

Fused silica substrate with a photolithographic pattern for conductive traces 
and resistance 

Highly polished wafers cleaned before photolithography in DI water and 10% 
HNO3 decreased U/Th levels 
Thicker traces (1-10 µm) deposited and removed for assay  

JFET affixed using assayed silver epoxy 
Cables bonded with silver epoxy; ultrasonically-drilled holes for strain relief 

ICPMS assay of fabricated boards to evaluate contamination during the 
production process 

Dissolved in a microwave reaction system with HNO3 and HF solutions

 16
V.E. Guiseppe - LRT 2019

NIM A828 (2016) 22–36 

full-body assay
6.5 mBq/kg Th      
10.6 mBq/kg U



Plastics
Various plastics assayed and certified for low-background use 

PTFE (NXT-85) detector supports and electrical insulators 
PTFE cryostat seals and calibration track tubing 
PEEK (Victrex®) and Vespel® for their load-bearing rigidity 
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Parylene coating of threaded hardware 
as anti-galling agent

After in-house machining, surfaces cleaned by 72-hr HNO3 leach 

PTFE

Vespel



Detector Assembly
Dedicated glove boxes with a purged N2 environment for detector assembly and material storage
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 Improved MAJORANA Cu Part Cleaning
Maintained an validation campaign to verify the finished parts remained pure 

Concerned that various handling conditions introduces unique pathways for surface contamination of U/Th. 
Should contamination occur, most sensitive to the large mass, large surface area components  
Contamination of parts during processing confirmed 

Predicted the depth of Cu removal to remove surface contamination 
Revised procedures and adopted additional QA requirements.

 19
V.E. Guiseppe - LRT 2019

Machined blocks essentially back to 
starting stock radiopurity: 
Acceptable for inner shield plates

bulk stock 
material

original 
finished part

new 
procedure

Study is ongoing to further identify pathways for surface contamination

Results not acceptable for the inner Cu shield (which had not been processed yet!)

Detector mounting components 
also improved, and acceptable

See C. Christofferson LRT 2017 
arXiv:1711.10361

https://arxiv.org/abs/1711.10361
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Background Model Development
Initial assay measurements with early simulations with assumed simulations and expected 
detector configuration 

Initially predicted < 2.2 cts/(FWHM t y) at Qββ
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Measured Background: 11.9± 2.0 cts/(FWHM tyr)

arXiv:1902.02299

Develop a background model to 
fit the observed energy spectra

- MaGe/Geant4 simulations 
with the as-built geometry of 
experiment

- ~4000 parts, ~70 unique 
designs

- ~40 component groups of 
related parts

Reviewing new assay information, as-built geometry and simulations, detector 
configurations, and updated physics lists 
Goals: Generate an updated assay-based model & Identify the residual backgrounds that survives PSD
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Background Model Development
Initial spectral fits suggest that the dominant source of background above assay estimates is not 
from nearby components  

Based on the energy dependence of the peak intensities 
Also Consistent with the low rate of detector coincidences observed 

One observed coincidence between 583 and 2614 keV 208Tl-decay gammas. Factor of 5-10 more 
expected for sources near detectors 

Identifying missing spectral components 

Using coincidence studies to constrain spectral fits
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No multisite cut, activities fit to background spectrum

Initial spectral fits missing 
strength at high energies 



Background Model Development: An example
Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby 
components  

Based on the energy dependence of the peak intensities
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A scaling of a distant component matches both the 239-keV and 2615-keV peak intensities from the 232Th chain

Distant ≈ Outside of the Ge-detector array

T.F. Gilliss, UNC, PhD Dissertation 2019 

(Th)

(Th)



Background Model Development: An example
Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby 
components  

Based on the energy dependence of the peak intensities
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A scaling of a nearby component scaled to the 239-keV peak underestimates the 2615-keV peak intensity from the 232Th chain

Nearby ≈ Within of the Ge-detector array

T.F. Gilliss, UNC, PhD Dissertation 2019 

(Th)

(Th)



Cable and Connector Improvements
An upgrade of the Demonstrator planned for late 2019 to improve channel reliability and backgrounds 
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Implementing custom connectors that incorporate a 
twist pin mechanism

Better HV crimp at the 
detector and flange

See M. Busch LRT 2017 arXiv:1712.04985

Current design relies on radially mis-aligned pins for contact

full-body assay
0.52 μBq/ch Th 
1.64 μBq/ch U

All components
0.36 μBq/ch Th 
0.46 μBq/ch U

Connectors Cables

Original BG budget estimate: 2.2 uBq/kg Th; 145 uBq/kg U  
 - deemed acceptable, but limited sampling statistics
many components based on limits.

Continued to work with Axon’ to produce clean cables
- Improved ICPMS assay at PNNL: Separation of Cu and FEP 

components from full body digestion
- Original cable BG may be higher than original estimate, running 

improved assay method on leftover cables
- Will deploy new cables with better confidence of actual 

background contribution

HV Connections

https://arxiv.org/abs/1712.04985


Summary and Outlook
MAJORANA DEMONSTRATOR construction complete, continuing to take data in its final configuration since 
Spring 2017 

Latest limit from 26 kg-yr exposure: >2.7 x 1025 yr (90% C.L.); sensitivity 4.8 x 1025 yr (90% C.L.) 

Background Model under development 
Initial background fits are informing possible distribution of background sources 
Goal of a full background model consistent with the data - inform design of next generation experiments 

Optimization of analysis cuts underway to improve background rejection 
New results and improved analysis reported later this year - stay tuned 

Low background + low threshold + energy resolution allows for broad physics program  

Planning an upgrade to improve channel reliability and background 

Expect to reach 50-70 kg-yr exposure with sensitivity in the range of 1026 yr half-life before 
decommissioning for LEGEND-200 

Next Generation 76Ge: LEGEND is selecting the best technologies, based on what has been learned from 
GERDA and the MAJORANA DEMONSTRATOR
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arXiv:1902.02299

M. Green LRT 2019

PRL 118 161801 (2017) PRL 120 211804 (2018) PRD 99 07200 (2019)
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Calibration and Energy Performance
Calibration of the detector array with a 228Th line source 

Source is inserted and retracted for scheduled calibrations 
Provides energy calibration, gain stability checks, and tuning of 
single-site (DEP) and multi-site (SEP) cuts 

Excellent energy resolution attained improved by charge trapping and 
ADC nonlinearities corrections
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[NIMA 872,16 (2017) arXiv:1702.02466]

Best achieved for 
0νββ searches!



Background Rejection: PSA Performance
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Low AvsE: 
multi-site events

Signal region for DCR

High DCR: 
alpha events

Signal region for AvsE

DS6a

Last year of data: 
12.7 kg-yr exposure
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Open the background integration 
window and measure background 

index [23 May 2018]

Open the Qββ region to set the 0νββ 
half-life limit [30 May 2018]

Blindness Implementation
Data is split for statistical blindness: 

Each 31 hours of open data is followed by 93 hours of completely blind data 

Unblinding in phases to perform data quality and consistency checks  
(<100 keV and multiple-detector events remain blind for other studies)
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Open up outside the 1950-2350 keV background integration region [16 May 2018]

DS0-6a
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2017 0νββ Result
First result announced in Oct. 2017  

Only open data: 9.95 kg-yr (enrGe) 

Lowest background configuration 
Active Exposure: 5.24 kg yr (enrGe) 
Background rate:                                                ;
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1.6+1.2
�1.0 ⇥ 10�3 counts/(keV kg yr)

arXiv:1710.11608;  PRL 120 132502 (2018)

DS0-5b

Full Exposure Background

17.8± 3.6 cts/(FWHM t yr)

4.0+3.1
�2.5 cts/(FWHM tyr)

T 0⌫
1/2 > 1.9⇥ 1025 yr (90%CL)

Full Exposure Limit

Median Sensitivity:
2.1⇥ 1025 yr (90%CL)



Background Index

 31
V.E. Guiseppe - LRT 2019

Lowest Background Full Dataset

Configuration

2017 Result 1.6+1.2
�1.0 ⇥ 10

�3
cts/(keV kg yr) 6.7± 1.4 cts/(keV kg yr)

[PRL 120 132502 (2018)] 4.0+3.1
�2.5 cts/(FWHM t yr) 17.8± 3.6 cts/(FWHM t yr)

New Result 4.7± 0.8⇥ 10
�3

cts/(keV kg yr) 6.1± 0.8⇥ 10
�3

cts/(keV kg yr)

11.9± 2.0 cts/(FWHM t yr) 15.4± 2.0 cts/(FWHM t yr)
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BG estimation window

Simulated Background near Qββ (no cuts)

360 keV Background Integration Window
Simulated background PDFs, relative scaling based on assay results 

Flat between 1950 keV and 2350 keV 
Remove ±5 keV around Qββ and prominent γ lines 

Use counts in this window to estimate background level at Qββ
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Exclude:
2099 - 2109 keV
2113 - 2123 keV
2199 - 2209 keV

2034 - 2044 keV
Qββ = 2039 keV



76Ge Processing
Dedicated facility in Oak Ridge to reduce the GeO2, zone refine the reduced metal, and 
recovery the scrap germanium. 

Reduction and Zone Refining 
98.3% yield of >47 Ω-cm Ge from 42.5 kg of enrGe (60.4 kg GeO2) 

ORTEC produced 35 enrGe detectors of total mass 29.7 kg 
Includes material recovered by our team 

Final yield of detectors is 70% (with R&D showing up to 85% is possible) 
Best to date 

Material stored and transported shielded from cosmic rays
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Zone Refining of Ge MetalGe reduced in Chlorine gas

NIMA 877, 314 (2018) 


