

Mario Schwarz on behalf of the GERDA Collaboration

Low Radioactivity Techniques 2019 May 19 - 23

(Neutrinoless) double beta decay

<u>2vββ</u> T_{1/2}(⁷⁶Ge) = (1.926 +/- 0.094) x 10²¹ yr (Eur.Phys.J. C75 (2015) no.9, 416)

Search for $0\nu\beta\beta$ of ⁷⁶Ge using HPGe detectors

*Astropart.Phys. 91 (2017) 15-21

GERDA - GERmanium Detector Array

Overview of the GERDA experiment

- Located in the Laboratori Nazionali del Gran Sasso (LNGS) in Italy
- Shielded by 3500 m.w.e. of rock

- GERDA Phase I: 2009 2013
- GERDA Phase II: 2015 2019
 - Upgrade Phase II+ in 2018

Overview GERDA Phase II

GERDA Phase II

Phase II data taking

- Phase II data taking: December 2015 to April 2018 (before upgrade)
 - 834.8 d live time; 74.7% used for analysis
- 35.6 kg enriched detector mass
- 58.9 kg yr exposure for Phase II
 - Data taking resumed as Phase II+
- 100 kg yr reached this autumn

Phase II data taking

Spectra before active background rejection

Active background suppression in GERDA

0vββ analysis

The Large Enriched Germanium Experiment for Neutrinoless ββ decay - LEGEND

Topology of μ induced events with 77m Ge production

- 1. A cosmic muon passes through the setup creating signals in water and LAr channels
- Neutrons are produced; usually n > 1
- Neutron capture on ⁷⁶Ge producing ^{77m}Ge & prompt gammas

٦Ш

Topology of μ induced events with ^{77m}Ge production

- 1. A cosmic muon passes through the setup creating signals in water and LAr channels
- Neutrons are produced; usually n > 1
- Neutron capture on ⁷⁶Ge producing ^{77m}Ge & prompt gammas
- 4. Neutrons of step 2. can be captured on 40 Ar, producing gammas, $\tau \sim 271 \ \mu s$

٦Ш

Topology of μ induced events with ^{77m}Ge production

- 1. A cosmic muon passes through the setup creating signals in water and LAr channels
- Neutrons are produced; usually n > 1
- Neutron capture on ⁷⁶Ge producing ^{77m}Ge & prompt gammas
- 4. Neutrons of step 2. can be captured on $^{40}\text{Ar},$ producing gammas, $\tau \sim 271 \ \mu s$
- 5. β decay of ^{77m}Ge: T_{1/2}~ 53 s

ТΠ

Topology of μ induced events with ^{77m}Ge production

- 1. A cosmic muon passes through the setup creating signals in water and LAr channels
- Neutrons are produced; usually n > 1
- Neutron capture on ⁷⁶Ge producing ^{77m}Ge & prompt gammas
- 4. Neutrons of step 2. can be captured on 40 Ar, producing gammas, $\tau \sim 271 \ \mu s$
- 5. β decay of ^{77m}Ge: T_{1/2}~ 53 s

<u>Plan</u>: Use the signal structure of muon + neutron production events to tag the production of 77m Ge \rightarrow remove several half-lives of 77m Ge to reduce background

Backgrounds due to µ-induced isotope production

- Geant4-simulation based on GERDA geometry done*
- Background contribution with analysis as done in GERDA:
 - \circ (1.5 ± 0.2) x 10⁻⁶ cts/(keV kg yr) for ⁷⁷Ge
 - \circ (1.8 ± 0.4) x 10⁻⁵ cts/(keV kg yr) for ^{77m}Ge
- Using delayed tagging to reduce ^{77m}Ge background
 - \circ Suppression of factor \gtrsim 10 possible
 - Important input for location selection for LEGEND-1000
- Verify simulation using LEGEND-200
 - \circ Expect ~ 200 $^{77(m)}$ Ge nuclei in 1 t yr of LEGEND-200

*Eur.Phys.J. C78 (2018) no.7, 597

Summary

- GERDA Phase II: BI 6 x 10⁻⁴ cts / (keV kg yr) and sensitivity 1.1 x 10²⁶ yr reached.
- Exposure of 58.9 kg yr acquired until April 2018, data taing ongoing

- Investigated cosmogenic ^{77m}Ge as important background contribution for LEGEND-1000
- Ability to study this and other delayed backgrounds in LEGEND-200

Backup slides

GERDA Phase II+

Introduced central fiber shroud & increased density of outer shroud

Active background suppression in GERDA

A/E Cut BEGe

ANN Coax

Risetime Coax

Active background suppression in GERDA

- Signal structure of an example event
- Dashed lines indicate missed signals

- Signal structure of an example event
- Dashed lines indicate missed signals

- Signal structure of an example event
- Dashed lines indicate missed signals

- Signal structure of an example event
- Dashed lines indicate missed signals

Low Radioactivity Techniques 2019 | May 19 - 23 | Mario Schwarz

- Signal structure of an example event
- Dashed lines indicate missed signals

Low Radioactivity Techniques 2019 | May 19 - 23 | Mario Schwarz

- Possible to tag ^{77m}Ge production by muon veto and delayed LAr signals only
- Delayed signals can reduce dead time compared to prompt signals

Low Radioactivity Techniques 2019 | May 19 - 23 | Mario Schwarz

Acquisition of ^{77m}Ge production events

- Acquisition of muon veto signals needed (should not be too difficult, 35 mHz rate)
- Germanium traces are already read out in physics runs → no need to implement a new trigger scheme
- Read out of LAr signals simultaneous with Ge signals: already implemented by prompt background suppression
- Read out LAr-only signals is difficult:
 - Trigger rate of ~1 kHz in LAr due to 39 Ar
 - Utilize signal topology in order to reduce data rate: Readout LAr in a time window after muon signal