

Making Predictions for Hadron Colliders

Mike Seymour – CERN TH / University of Manchester

The University of Manchester

Making Predictions for Hadron Colliders

1. From Feynman Diagrams to Cross Sections

The University of Manchester

Phenomenology

Calculating Event Rates

Calculating Cross Sections

Calculating Cross Sections

$$\mathrm{d}\sigma = \frac{1}{F} |\mathcal{M}|^2 \,\mathrm{d}LIPS$$

Feynman Rules

Tree Diagrams as Leading Order of Expansion in α

 $\alpha \approx 1/_{137}$ but $\alpha_s \approx 0.1$ \Rightarrow QCD corrections important

Proton structure

• Proton = uud ?

• Held together by gluons?

Proton structure: parton distribution functions

- How is the proton's energy shared between its parton constituents?
- Measure in deep inelastic electron scattering
- Quantify by parton distribution function

 $f_i(x)dx$ = probability that parton of type *i* is found with fraction of proton's momentum between *x* and *x* + d*x*

- But how long do those quantum fluctuations live?
- \Rightarrow PDFs depend on the momentum scale of the probe $f_i(x, Q^2) dx$

Proton structure: parton distribution functions

MCnet The Drell-Yan process $(pp \rightarrow \mu^+ \mu^-)$

Monte

Carlo

net

 $d\sigma = dx_1 dx_2$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \sum_q \int \mathrm{d}x_1 f_q(x_1, Q^2) \,\mathrm{d}x_2 f_{\bar{q}}(x_2, Q^2) \frac{4\pi\alpha^2}{9Q^2} e_q^2 \,\delta(x_1 x_2 s - Q^2)$$

Loop Diagrams as Higher Order Corrections

$$\begin{split} |\mathcal{M}|^2 &= |\mathcal{M}_0|^2 + 2\Re(\mathcal{M}_0^*\mathcal{M}_1) + |\mathcal{M}_1|^2 + \cdots \\ &\mathcal{O}(\alpha^2) & \mathcal{O}(\alpha^2\alpha_s) \end{split}$$

Quantum mechanics: sum over unobserved quantum numbers
= integrate over gluon momenta

Loop Diagrams as Higher Order Corrections

- Gluon momentum integral is divergent! (= *minus* infinity)
- Divergence comes from:
 - Momentum = 0
 - Momentum = parallel to quark or antiquark

Gluon Emission as Higher Order Correction

- Gluon emission describes a different process $(q\bar{q} \rightarrow \mu^+ \mu^- g)$
- But if we are only interested in the total cross section for Drell-Yan pairs, must integrate over gluon momenta
- Divergent from momentum = 0 or parallel to quark or antiquark
- Cancels loop divergence

Next-to-Leading Order (NLO) cross section

- $\sigma_{NLO} = \sigma_{tree} + \sigma_{loop} + \sigma_{emission}$
- σ_{loop} and $\sigma_{emission}$ each divergent
 - must regularize and expose singularities of each
 - Subtraction algorithms
- Fully automated,
 - e.g. in Madgraph/aMC@NLO, MCFM, Sherpa, Herwig ...

State of the Art – NNLO Calculations

From Feynman Diagrams to Cross Sections

- Major part of phenomenology = calculating cross sections
- LO = write down all tree diagrams, integrate phase space numerically
- Convolute with parton distribution functions (fitted to data)
- NLO = one-loop diagrams, one-emission processes
 - Extract singularities from integrals, integrate analytically
 - Integrate remainders numerically
- NNLO = two-loop diagrams, one-emission at one-loop, and two emissions
- But LHC events contain *hundreds* of additional particles...