

Chloé Malbrunot CERN

CERN Summer student lecture 2018

Content

LECTURE # 1 (This lecture)

- What is antimatter?
- Some historical reminders
- Discrete symmetries
- Primordial antimatter search

LECTURE # 2 (This lecture)

- Antiprotons at low energies : cooling and trapping
- Experiments at the AD : exotic atoms made of antimatter
- Antihydrogen : a tool to study matter-antimatter asymmetry
- Everyday's application of antimatter

Production of antimatter

The case of antiprotons

$$p + p \to \bar{p} + p + p + p$$

$$\sqrt{s} = \sqrt{2m_p^2 + 2E_p m_p}$$

Pair production : Threshold energy at 5.6 GeV

Bevatron was right at threshold when producing the first antiprotons !

Need higher proton energies to produce more antiprotons

Antiproton Cooling

Production at 26 GeV/c

Maximum production at 3.7 GeV/c (~ collection momentum) Sharp fall-off around the peak

CERN SUMMER STUDENT LECTURE - 2018 -

FIG. 1. Normalized antiproton yield (antiprotons per proton) at 26 GeV/c proton-beam momentum. The normalization is chosen so that the yield is one at the maximum.

Antiproton Cooling

Cooling : reduce phase space and increase phase-space density

 E_h , E_v : horizontal, vertical emittances L: longitudinal spread N: number of particles $\Delta p/p$: momentum spread

Cooling methods :

- Stochastic cooling
- Electron cooling

Electron cooling

Electron cooling

Stochastic cooling

- Measure beam center by pick-ups Correction signal to opposite kicker
- Pioneered at CERN for discovery W,Z bosons
- Nobel Prize S. van der Meer
- **Cooling power decreases with decreasing energy**
- **Cooling time ~ number of particles**

 $\Delta p/p \sim 0.07\%$ $_{
m CERN\,s} \ \epsilon = 3-4 \ \pi {
m mm.mrad}$

LEAR

The Antiproton Decelerator

C. Malbrunot

The AD Facility

All-in-one machine:

Antiproton capture

deceleration & cooling

100 MeV/c (5.3 MeV)

Pulsed extraction

2-4 x 10⁷ antiprotons per pulse of 100 ns length

1 pulse / 85–120 seconds

ELENA

Decelerator after the AD : 5.3 MeV -> 100 keV

In commissioning. Delivery of \bar{p} to all AD experiments planned for 2021 Can be seen at the AD!

Penning traps

CERN SUMMER STUDENT LECTURE - 2018 -

C. Malbrunot

13

Penning traps

CERN SUMMER STUDENT LECTURE - 2018 -

C. Malbrunot

13

AD EXPERIMENTS

AD EXPERIMENTS

Proton

ANTIHYDROGEN EXPERIMENTS

 $\begin{array}{c} \bar{p} + e^+ \rightarrow \bar{H} + \gamma \\ \bar{p} + e^+ + e^+ \rightarrow \bar{H} + e^+ \end{array} \begin{array}{c} \text{Asacusa} \\ \text{Alpha} \\ \text{Atrap} \end{array}$

P

3-body recombination

 π^+

Production and detection of cold antihydrogen atoms

M. Amoretti*, C. Amsler†, G. Bonomi‡§, A. Bouchta‡, P. Bowell, C. Carraro*, C. L. Cesar*, M. Chariton*, M. J. T. Collier*, M. Doser‡, V. Filippini☆, K. S. Fine‡, A. Fontana☆**, M. C. Fujiwara††, R. Funakoshi††, P. Genova☆**, J. S. Hangst||, R. S. Hayano†† M. H. Holzscheiter‡, L. V. Jørgensen*, V. Lagomarsino*‡‡, R. Landua‡, D. Lindelöf†, E. Lodi Rizzini§☆, M. Macri*, N. Madsen†, G. Manuzio*‡‡, M. Marchesotti☆, P. Montagna☆**, H. Pruys†, C. Regenius†, P. Riedier‡, J. Rochet†*, A. Rotondi☆**, G. Rouleau‡*, G. Testera*, A. Variola*, T. L. Watson* & D. P. van der Werf*

ATHENA Nature 419 (2002) 456

C. Malbrunot

 π^{-}

CERN SUMMER STUDENT LECTURE - 2018 -

 π^{-}

Spectroscopy of H

CERN SUMMER STUDENT LECTURE - 2018 -

C. Malbrunot

Hyperfine splitting

21cm line

Hyperfine splitting

CERN SUMMER STUDENT LECTURE - 2018 -

C. Malbrunot

21

STATUS OF GS-HFS OF H/H

In a TRAP:

Precision of ~ 500 kHz

STATUS OF GS-HFS OF H/H

<u>In a TRAP:</u> Precision of ~ 500 kHz

In a BEAM:

Precision of ~3Hz on HYDROGEN

STATUS OF 1S-2S OF H

In a TRAP: Relative precision obtained : 2 × 10⁻¹² (~ 5 kHz)

- Comparison to H in the same apparatus
- Constraints for further precision
- More H
- Control the QS (for beam)
- Colder H :
 - Laser cooling (sympathetic cooling of particles/ions) Be+, La-,C2 ...
 - Lyman-alpha cooling of $\bar{\rm H}$

ON THE GRAVITY SIDE

ON THE GRAVITY SIDE

<u>Antigravity</u>: $g_{matter} = -g_{antimatter}$ separation of matter and antimatter in Universe

Quantum gravity

Graviton (S=2) \rightarrow add Gravivector (S=1), Graviscalar (S=0) simplest case: static potential

$$V = -\frac{Gm_1m_2}{r} (1 \mp a \, e^{-r/v} + b \, e^{-r/s})$$

a: Gravivector, b: Graviscalar

– attractive (matter-matter), +: repulsive: matter-antimatter

matter experiments: |a-b|

antimatter: a+b

STATUS OF THE FIELD

Green dots---simulated annihilations

Red circles---434 Observed annihilations

CERN SUMMER

Vertical position of annihilation vertex during release of trapping field

AEGIS : DEFLECTOMETER

ALPHA : VERTICAL TRAP ~10% - 1%

GBAR : DROPING EXPERIMENT

First experiment connected to ELENA

ANTIPROTON EXPERIMENTS

 $v_c^2 = v_{-}^2 + v_{z}^2 + v_{+}^2$ superposition В reduced cyclotron motion Inject antiprotons along magnetic field axis end cap B Energy ~ few keV magnetron mo axial motion compensation electrode С R Precisions measurement : only 1 p ring electrode U = I Rcompensation Detect image current in resonance electrode circuit due to charge movement in $dE_p/dt = P_{cool} = -I^2R$ the Penning trap end cap →cooling Detection by cryogenic resonance circuit (low noise)

G. Gabrielse, W. Quint (LEAR)

ANTIPROTON EXPERIMENTS

ANTIPROTON EXPERIMENTS

 $\frac{g_{p,\bar{p}}}{2} = \frac{\nu_L}{\nu_c} = \frac{\mu_{p,\bar{p}}}{\mu_N}$

 $\frac{g_p}{2}$ = 2.792 847 344 62 (82)

G. Schneider et al., Science 358, 1081 (2017)

 $\frac{g_{\overline{p}}}{2} = 2.792\ 847\ 344\ 1\ (42)$

C. Smorra et al., Nature 550, 371 (2017)

Previous work by the ATRAP collaboration Di Saccia et al. Phys. Rev. Lett. 110, 130801 (2013)

first measurement more precise for antimatter than for matter

CERN SUMMER STUDENT LECTURE - 2018 -

C. Malbrunot

ANTIPROTONIC HELIUM

ANTIPROTONIC HELIUM

Your body produces antimatter:

The body of an 80 kg individual produces 180 positrons per hour! These come mostly from the disintegration of potassium-40, a natural isotope which is absorbed by drinking water, eating and breathing.

10 e+/s !

" **DAILY**" **APPLICATIONS OUTPUT OUT**

Antiprotons in accelerators! Antiprotons for nuclear studies (PUMA)

Antiproton Therapy (under study)

Medical imaging : PET

positron lifetime spectroscopy : positron wavefunction can be localized in the attractive potential of a defect Check material structure, defects etc

A fuel?

Most powerful fuel you can imagine.

1g would be enough to drive a car around the earth for 1000 times or bring the space shuttle into orbit BUT

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of p̄ ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€ 2 000 000 000 000 000 000 000 €

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **<u>billion years</u>** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€ 2 000 000 000 000 000 000 000 €

a year of \bar{p} trapped and annihilating would illuminate a light bulb for 5s

Enjoy your Summer Studentship!

AD PHYSICS PROGRAMME : TESTING FUNDAMENTAL SYMMETRIES & CORNERSTONE OF SM

TEST BODIES : EXOTIC ANTIMATTER ATOMS & ANTIPROTONS

>20 YEARS OF UNIQUE RESEARCH WITH ANTIHYDROGEN

ENTERING PRECISION AREA WITH ANTIHYDROGEN

MANY OTHER IDEAS : CHARGE NEUTRALITY, PROTONIUM SPECTROSCOPY, PORTABLE PBAR TRAP ...

ANTIMATTER AS MEDICAL AND SCIENTIFIC TOOLS

OTHER APPLICATIONS OF ANTIMATTER?

Enjoy your Summer Studentship!

AD PHYSICS PROGRAMME : TESTING FUND AMENTAL CMAMETRIES & CODMUNICATIONS OF SM TEST BODIE >20 YEARS C ENTERING I MANY OTHI SPECTROSC

ANTIMATTER AS MEDICAL AND SCIENTIFIC TOOLS

OTHER APPLICATIONS OF ANTIMATTER?