Accelerator Technology Challenges (Part 3: Accelerator operation and design challenges) Lecture I

A. Lechner (CERN)

With contributions from many CERN colleagues

Summer student lecture $July \ 24^{\rm th}, \ 2018$

Beam losses ...

... concern all accelerators ...

medical accelerators synchroton light sources spallation sources high energy (hadron/lepton) colliders

... and they can have many negative consequences

etc.

different machines \rightarrow different challenges

These lectures: how to cope with beam losses in high-energy colliders (main focus: circular hadron colliders - LHC)

- Lecture I
 - Beam losses in circular hadron colliders
 - Particle-matter interactions (high-energy hadrons)
 - Consequences of beam losses
- Lecture II
 - $\circ\,$ Regular and irregular beam losses in the LHC
 - $\circ\,$ How to safely dump the 300 MJ LHC beams
 - Beam loss simulations (shower simulations)

two counter-rotating beams

July 24 $^{\mathrm{th}}$, 2018

4/36

Key parameters

Effects of beam losses

Large Hadron Collider

 $1 eV = 1.60218 \times 10^{-19} J$

All pictures: CERN

 $1 \text{ TeV} = 10^{12} \text{ eV}$

A. Lechner (Beam losses I)

Large Hadron Collider - stored beam energy

Large Hadron Collider

+ hundreds of quadrupoles

1232 NbTi superconducting dipole magnets – 15 m long, 35 tons Magnetic field of 8.3 T (current of 11.8 kA) @ 1.9 K (super-fluid Helium)

ousands of correcte

Figures of magnets/vacuum chamber: cds.cern.ch

Full beam lost → enormous damage potential!

Monitoring essential:

- beam (position, losses, etc.)
- equipment (magnet current etc.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Something out of norm \rightarrow beam extracted on dump

Beam losses in circular colliders

Beam losses in circular colliders

A. Lechner (Beam losses I)

But when high-energy hadrons are lost in a collider ...

The main actors (in a hadron machine)

Some properties:

• Hadrons:

• Proton (p) • Neutron (n)

• Neutral pions (π^0)

Electrons, positrons, photons 6 GeV proton bions, protons, ... 938 MeV/c² stable 940 MeV/c² τ =880 s • Charged pions (π^+, π^-) 140 MeV/c² τ =2.6×10⁻⁸ s [mainly $\pi^+ \rightarrow \mu^+ \nu_\mu, \pi^- \rightarrow \mu^- \overline{\nu}_\mu$] $(c\tau = 780 \text{ cm})$ 135 MeV/c² τ =8.5×10⁻¹⁷ s [mainly $\pi \rightarrow \gamma \gamma$] $(c\tau = 25 \text{ nm})$

neutrons

• Charged and neutral kaons, (anti)hyperons, antiprotons, antineutrons ...

- Photons (γ), stable, m=0
- Leptons:

 \circ Electron, positron (e^-, e^+) $511 \,\mathrm{keV/c^2}$ stable \circ Muons (μ^-, μ^+) 106 MeV/c² τ =2.2×10⁻⁶ s [mainly $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu, \mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$] $(c\tau = 687 \,\mathrm{m})$

化口石 化晶石 化压石 化压石

electron

Electromagnetic interactions of charged particles

loss rather small (exception: low-energy heavy projectiles like ions)

Bremsstrahlung photon (relevant for e-/e+ above few 10 MeV. for other particles only at very high energies)

化口下 化缩下 化医下不良

July 24th, 2018

15/36

Beam-matter interactions: a matter of beam energy (1/2)

Beam-matter interactions: a matter of beam energy (2/2)

Hadronic showers: basics

Electromagnetic showers: basics

- Relevant processes:
 - High-energy e⁻/e⁺ lose energy mainly through bremsstrahlung
 - For photons at such energies, dominant interaction is pair production
- Cascade development:
 - $\circ~$ At high energy (\geqslant GeV), these processes lead to particle multiplication

Beam-matter interactions: effects

Degradation of material properties

due to radiation damage (ionization and non-ionizing energy loss) and gas production (nuclear collisions)

Fig. courtesy of P. Fessia

Single event effects in electronics due to current pulse (ionizing energy loss)

Cumulative damage in electronics

(ionizing energy loss and non-ionizina enerav loss)

List not exhaustive

Fig. courtesy of TE/EP

Beam-matter interactions: effects

Quenches of superconducting magnets

LHC@7TeV \rightarrow Quench \sim O(mJ/cm³)

Energy of the stored LHC beam (2018) ≈

S. Terfloth, Wikipedia, CC BY-SA 3.0

Kinetic energy of a 400 t train traveling at a speed of 140 km/h

Beam loss energy to induce a quench (LHC@7TeV, msec loss duration) ≈

> *Kinetic energy of a pedestrian* (70 kg*) walking at 5 km/h**

* 70 kg= average weight of a European (Wikipedia) * 5 km/h= preferred walking speed of humans (Wikipedia)

・ロト ・部ト ・ヨト ・ヨ

Quenches of superconducting magnets - quench recovery

- → beam safely extracted on dump block before magnetic field degrades
- (i.e. quench is not a catastrophic event)

But: quench recovery can be lengthy

- → too many quenches = performance limitation
- → quench prevention important! (still some quenches not avoidable)

Cryo recovery between 12 to 15 h

Date 23 Nov 2014

A dust particle fell into the beam...

Damage due to shock-heating

Fast beam losses → instantaneous damage if stress waves strong enough

Energy densities ~ O(100J/cm³-kJ/cm³)*

*Onset of damage depends on many parameters (loss duration, material properties, spatial energy density distribution, etc.)

Energy of the stored LHC beam (2018) ≈

S. Terfloth, Wikipedia, CC BY-SA 3.0

Kinetic energy of a 400 t train traveling at a speed of 140 km/h

Beam loss energy to induce damage in copper* ≈

Damage due to shock-heating - example from Tevatron (Fermilab)

Tevatron quench incident 2003

Beam line detector (Roman Pot) accidentally inserted itself into the beam \rightarrow showers quenched magnets \rightarrow beam orbit drift (5µm/turn) \rightarrow impact on collimators

Hole in tungsten

Damage due to shock-heating - example from SPS (CERN)

Damage due to shock-heating - hydrodynamic tunneling

Passage of ionizing particle \rightarrow charge collected on sensitive node > critical charge \rightarrow electrical disturbance

Passage of ionizing particle \rightarrow charge collected on sensitive node > critical charge \rightarrow electrical disturbance

イロト イポト イラト イラ

Passage of ionizing particle \rightarrow charge collected on sensitive node > critical charge \rightarrow electrical disturbance

Passage of ionizing particle \rightarrow charge collected on sensitive node > critical charge \rightarrow electrical disturbance

A variety of phenomena:

- Soft errors (recoverable): Single Event Upset (SEU), Multiple Bit Upset (MBU), Single Event Transient (SET), ...

- Hard errors (not recoverable): Single Event Latch-up (SEL), Single Event Burnout (SEB), ...

Single event effects in electronics - which particles?

Essentially only ions create sufficient charge densities

<u>But:</u>

Hadron accelerators → indirect ionization by secondary hadrons!

化口石 化晶石 化压石 化压石

Single event effects in electronics - an early example at CERN

CNGS (CERN Neutrinos to Gran Sasso) radiation issues 2007

Single Event Effects in micro-controllers \rightarrow successive failures of ventilation system \rightarrow 2007 run stopped ahead of schedule → relocation of electronics + improvement of shielding (53m³ of concrete, 6m thick)

> for a nominal year 2500

> > 2000

1500

1000

500

500

-7500

-5000

-2500

o

target

2500

X(cm)

With material from

E. Gschwendtner.

L Effhyminoulos M Brugger

A. Ferrari, L. Sarchiapone

400 GeV

4.5x10¹⁹ protons

on target/year

5000

7500

decay tube

12500

Z(cm)

10000

10

Single event effects in electronics - LHC

R. Secondo

Many accelerator systems are based on COTS* components - readily available, performance, costs (many components)

*COTS = Commercial-Off-The-Shelf

Radiation Test facilities monitoring Component Shielding testing requirements Development Shower simulations

Response to radiation can strongly vary!!

STP3NV80 (N-channel, 800V)

IREBE30

22 destructive events before LS1

similar specs but different sensitivitv!

(N-channel, 800V) One destructive event hefore LS1

イロト イヨト イヨト イヨト

Example: MOSEET with

Activation - production of radioactive nuclides in hadron accelerators

• Many residuals are unstable (radioactive)

July 24th, 2018

31/36

Activation - radioactive decay modes

Activation - nuclide contribution to residual dose versus cooling time

Cooling time = time after beam OFF

Example: sample of concrete, activated in stray radiation field of a copper target (mixed hadron beam, 120 GeV/c)

Activation - radiation area classification at CERN

Activation - access for technical interventions (example LHC)

Interventions in radiation areas \rightarrow need to be optimized

ALARA = As low as reasonably achievable

Radiation mapping before access:

