Physics at (Future) Lepton Colliders
CERN Summer Student Lecture, 2018

Lecture 2

Mogens Dam
Niels Bohr Institute, Copenhagen
Lecture 1 (Thursday 26 July, 11:35)
- Introduction: Status and “near” future
- A bit of history: Consolidation of Standard Model: Electroweak Precision Measurements
- An experimental strategy: \(e^+e^-\) colliders
- Precision Higgs Physics: ILC and FCC-ee

Lecture 2 (Friday 27 July, 10:25)
- Electroweak Precision Physics: FCC-ee
- High Energy \(e^+e^-\) Physics: CLIC
- Instrumentation: Detectors for \(e^+e^-\) physics
- Thinking out of the box: Muon colliders
- Rounding off: Summary and Conclusions
Reminder from yesterday

- Things went a little fast yesterday, but I still hope I managed to convince you that \(e^+e^- \) colliders promise very precise measurements of Higgs properties.

<table>
<thead>
<tr>
<th>Coupling</th>
<th>HL-LHC</th>
<th>ILC(_{250})</th>
<th>CLIC(_{380})</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_{HWW})</td>
<td>3.5%</td>
<td>1.7%</td>
<td>1.3%</td>
<td>0.47%</td>
</tr>
<tr>
<td>(g_{HZZ})</td>
<td>3.5%</td>
<td>0.35%</td>
<td>0.80%</td>
<td>0.22%</td>
</tr>
<tr>
<td>(g_{Hbb})</td>
<td>8.2%</td>
<td>1.8%</td>
<td>2.8%</td>
<td>0.68%</td>
</tr>
<tr>
<td>(g_{Hcc})</td>
<td>SM</td>
<td>2.3%</td>
<td>6.8%</td>
<td>1.2%</td>
</tr>
<tr>
<td>(g_{Htt})</td>
<td>6.5%</td>
<td>1.9%</td>
<td>4.2%</td>
<td>0.80%</td>
</tr>
<tr>
<td>(g_{H\mu\mu})</td>
<td>5.0%</td>
<td>13%</td>
<td>n.a.</td>
<td>8.6%</td>
</tr>
<tr>
<td>(g_{H\gamma\gamma})</td>
<td>3.6%</td>
<td>6.4%</td>
<td>n.a.</td>
<td>3.8%</td>
</tr>
<tr>
<td>(g_{Hgg})</td>
<td>3.9%</td>
<td>2.2%</td>
<td>3.8%</td>
<td>1.0%</td>
</tr>
<tr>
<td>(g_{HZ\gamma})</td>
<td>~12%</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(\text{BR}_{\text{EXOT}})</td>
<td>SM</td>
<td><1.8%</td>
<td><3.0%</td>
<td><1.1%</td>
</tr>
<tr>
<td>(\Gamma_H)</td>
<td>~50%</td>
<td>3.8%</td>
<td>6.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>(g_{Htt})</td>
<td>4.2%</td>
<td>-</td>
<td>?</td>
<td>10% (*)</td>
</tr>
<tr>
<td>(g_{HHH})</td>
<td>30-50%</td>
<td>?</td>
<td>?</td>
<td>40%(*)</td>
</tr>
</tbody>
</table>
Electroweak Precision Physics

FCC-ee

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Luminosity [10^{34} cm2s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (91.2 GeV)</td>
<td>4.0 - 4.6 x 1036 cm2s$^{-1}$</td>
</tr>
<tr>
<td>WW (161 GeV)</td>
<td>5.0 - 5.6 x 1035 cm2s$^{-1}$</td>
</tr>
<tr>
<td>Higgs (240 GeV)</td>
<td>1.4 - 1.7 x 1035 cm2s$^{-1}$</td>
</tr>
<tr>
<td>Higgs (350 GeV)</td>
<td>3.4 - 3.8 x 1034 cm2s$^{-1}$</td>
</tr>
<tr>
<td>Higgs (365 GeV)</td>
<td>2.8 - 3.1 x 1034 cm2s$^{-1}$</td>
</tr>
<tr>
<td>Z (91.2 GeV)</td>
<td>1.5 x 1034 cm2s$^{-1}$</td>
</tr>
</tbody>
</table>

- FCC-ee (Baseline, 2 IPs)
- LEP3 (Baseline, 4 IPs)
- ILC (Baseline)
- CLIC (Baseline)
- CEPC (Baseline, 2 IPs)
Precision electroweak physics at FCC-ee (1)

- Reminder: The FCC-ee goals in numbers

<table>
<thead>
<tr>
<th>√s (GeV)</th>
<th>90 (Z)</th>
<th>160 (WW)</th>
<th>240 (HZ)</th>
<th>350 (tt)</th>
<th>365 (WW→H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumi (ab⁻¹/yr)</td>
<td>40</td>
<td>6</td>
<td>1.7</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Events/year</td>
<td>1.6×10^{12}</td>
<td>3×10^7</td>
<td>3.3×10^5</td>
<td>2.4×10^5</td>
<td>9,000</td>
</tr>
<tr>
<td># years</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Events@FCCee</td>
<td>6×10^{12}</td>
<td>6×10^7</td>
<td>10^6</td>
<td>10^6</td>
<td>45,000</td>
</tr>
<tr>
<td>Appellation</td>
<td>Tera-Z</td>
<td>Oku-W</td>
<td>Mega-Higgs</td>
<td></td>
<td>Mega-top</td>
</tr>
</tbody>
</table>

- FCC-ee is the ultimate Z, W, Higgs and top factory
 - 10^5 times more Zs and 10^3 times more Ws than LEP1 and LEP2
 - Potential statistical accuracies are mind-boggling!

- Predicting accuracies with 200 times smaller statistical precision than at LEP is hard
 - Conservatively, use LEP experience for systematics. This is just the start...

- Example: The uncertainty on E_{BEAM} (2 MeV) was the dominant uncertainty on m_Z, Γ_Z
 - Can we do significantly better at FCC-ee?
Precision electroweak physics at FCC-ee (2)

- **Measurement of the beam energy at LEP**
 - Ultra-precise measurement unique to circular colliders (crucial for m_Z, Γ_Z)

Electron with momentum p in a uniform vertical magnetic field B:

![Diagram of electron with momentum p in a magnetic field B]

In real life, B non uniform, LEP ring not circular

$E \sim p = eBR = (e/2\pi)BL$

To be measured

The electrons get transversally polarized (i.e., their spin tends to align with B)

Slow process (~ 1 hour to get 10% polarization)

NB. Polarization can be kept in collision (was attempted only once at LEP).
Precision electroweak physics at FCC-ee (3)

- Measurement of the beam energy at LEP (cont’d)
 - The spin precesses around B with a frequency proportional to B (Larmor precession)
 - Hence, the number of revolutions v_S for each LEP turn is proportional to $\int B \, dl$

\[
v_s = \frac{g_e - 2}{2m_e} \times E_{\text{beam}}
\]

- Resonant depolarization:

\[\text{Vary } \nu \text{ until Pol} = 0 \quad (\nu = v_S)\]

- LEP was colliding 4 bunches of e^+ and e^-; FCC-ee will have 1,000’s of bunches
 - Use ~10 “single” bunches to measure E_{beam} with resonant depolarization
 - Each measurement gives 100 keV precision, with no extrapolation uncertainty
Boils down to measuring cross sections and asymmetries

- Measure $\sin^2 \theta_W$ with A_{FB} at $\sqrt{s} = m_Z$
- Measure $\alpha_{QED}(m_Z)$ with A_{FB} at $\sqrt{s} = 87.9$ and 94.3 GeV
 - \sqrt{s}-points also for the Z resonance scan (m_Z, Γ_Z)

The dominant experimental uncertainties (still!) come from the beam energy knowledge
Precision electroweak physics at FCC-ee (5)

- EW precision measurements at FCC-ee *(see arXiv:1308.6176 and upcoming CDR)*

Z resonance: TeraZ

- ALEPH
- DELPHI
- L3
- OPAL

WW threshold scan: OkuW

- **Threshold scan**
 - m_W to 0.5 MeV (12 MeV)
 - Branching ratios $R_{l\nu}$, R_b
 - $\alpha_S(m_Z)$ to 0.0002

tt threshold scan: MegaTop

- **Threshold scan**
 - m_{top} to 10 MeV (500 MeV)
 - λ_{top} to 10%
 - EW couplings to 1%

Lineshape

- Exquisite E_{beam} (unique!)
- m_Z, Γ_Z to < 100 keV (2.2 MeV)

Asymmetries

- $\sin^2\theta_W$ to 6×10^{-6} (1.6 $\times 10^{-4}$)
- $\alpha_{QED}(m_Z)$ to 3×10^{-5} (1.5 $\times 10^{-4}$)

Branching ratios $R_{l\nu}$, R_b

- $\alpha_S(m_Z)$ to 0.0002 (0.0002)

Radiative return $e^+e^- \rightarrow Z\gamma$

- N_{ν} to 0.0004 (0.008)
 Measurements of $t_L t_L Z$ and $t_R t_R Z$ couplings, g_L and g_R

- At FCC-ee@360 GeV, couplings extracted from “top polarization measurement”: Leptons and b-jet distributions
- Couplings sensitive to, e.g., composite Higgs models
Summary of achievable precisions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_Z (MeV)</td>
<td>Lineshape</td>
<td>91187.5 ± 2.1</td>
<td>0.005</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>Γ_Z (MeV)</td>
<td>Lineshape</td>
<td>2495.2 ± 2.3</td>
<td>0.008</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>R_l</td>
<td>Peak</td>
<td>20.767 ± 0.025</td>
<td>0.0001</td>
<td>< 0.001</td>
<td>Statistics</td>
</tr>
<tr>
<td>R_b</td>
<td>Peak</td>
<td>0.21629 ± 0.00066</td>
<td>0.000003</td>
<td>< 0.00006</td>
<td>$g \to bb$</td>
</tr>
<tr>
<td>N_ν</td>
<td>Peak</td>
<td>2.984 ± 0.008</td>
<td>0.00004</td>
<td>< 0.004</td>
<td>Lumi meast</td>
</tr>
<tr>
<td>$\sin^2 \theta^\text{eff}_W$</td>
<td>$A_{FB}^{\mu\mu}$ (peak)</td>
<td>0.23148 ± 0.00016</td>
<td>0.000003</td>
<td>0.0000006</td>
<td>Beam energy</td>
</tr>
<tr>
<td>$1/\alpha_{QED}(m_Z)$</td>
<td>$A_{FB}^{\mu\mu}$ (off-peak)</td>
<td>128.952 ± 0.014</td>
<td>0.004</td>
<td>< 0.004</td>
<td>QED corr.</td>
</tr>
<tr>
<td>$\alpha_s(m_Z)$</td>
<td>R_l</td>
<td>0.1190 ± 0.0025</td>
<td>0.00001</td>
<td>0.0001</td>
<td>New Physics</td>
</tr>
<tr>
<td>m_w (MeV)</td>
<td>Threshold scan</td>
<td>80385 ± 15</td>
<td>0.3</td>
<td>< 0.5</td>
<td>EW Corr.</td>
</tr>
<tr>
<td>N_ν</td>
<td>$e^+ e^- \to \gamma Z, Z \to \nu\nu, ll$</td>
<td>2.92 ± 0.05</td>
<td>0.001</td>
<td>< 0.001</td>
<td>?</td>
</tr>
<tr>
<td>$\alpha_s(m_w)$</td>
<td>$B_{\text{had}} = (\Gamma_{\text{had}}/\Gamma_{\text{tot}})_w$</td>
<td>$B_{\text{had}} = 67.41 ± 0.27$</td>
<td>0.00018</td>
<td>< 0.0001</td>
<td>CKM Matrix</td>
</tr>
<tr>
<td>m_{top} (MeV)</td>
<td>Threshold scan</td>
<td>173340 ± 760 ± 500</td>
<td>10</td>
<td>20</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>Γ_{top} (MeV)</td>
<td>Threshold scan</td>
<td>?</td>
<td>25</td>
<td>?</td>
<td>$\alpha_s(m_Z)$</td>
</tr>
<tr>
<td>λ_{top}</td>
<td>Threshold scan</td>
<td>$\mu = 1.2 ± 0.4$</td>
<td>15%</td>
<td>?</td>
<td>$\alpha_s(m_Z)$</td>
</tr>
</tbody>
</table>
Combination of all precision electroweak measurements

- FCC-ee precision allows m_{top}, m_W, $\sin^2 \theta_W$ to be predicted within the SM
- ... and to be compared to the direct measurements

New Physics?

- Direct measurements (blue ellipse) and indirect constraints (red ellipse) may or may not overlap
Precision electroweak physics at FCC-ee (9)

- Higher-dimensional operators as a parametrization of new physics
 - Possible corrections to the Standard Model
 - Standard Model Effective Theories (SMEFT)

\[\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i \]

Electroweak precision measurements

Limits on new physics scale, \(\Lambda \):
- **Today:** \(\Lambda > 4\text{-}10\text{TeV} \)
- **After FCC-ee:** \(\Lambda > 20\text{-}70\text{ TeV} \)
Precision electroweak physics at FCC-ee (10)

- Interpret also precisely measured Higgs couplings (Lecture 1) in terms of higher-dimension operators

\[\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i \]

Higgs precision measurements

Limits on new physics scale, \(\Lambda \):
- Today: \(\Lambda > 1\text{-}15 \text{ TeV} \)
- After FCC-ee: \(\Lambda > 1\text{-}35 \text{ TeV} \)
Combine EW precision observables with precise Higgs coupling measurements via higher-dimensional operators

- The EW and Higgs measurements are highly complementary
 - Together they provide precise constraints on a large number of operators
 - Different New Physics models give different pattern of deviations from SM
 - Pattern provides fingerprint to differentiate among models
The predictions of m_{top}, m_{W}, m_{H}, $\sin^2 \theta_{W}$ have theoretical uncertainties

- Which may cancel the sensitivity to new physics
- For m_{W} and $\sin^2 \theta_{W}$ today, these uncertainties are as follows

<table>
<thead>
<tr>
<th>m_{W}</th>
<th>$\pm 0.0055 m_{\text{top}}$</th>
<th>$\pm 0.0025 m_{Z}$</th>
<th>± 0.0018 (QED)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\pm 0.0020 \alpha_{S}$</td>
<td>$\pm 0.0001 m_{H}$</td>
<td>± 0.0040 (theory)</td>
</tr>
<tr>
<td></td>
<td>± 0.008 (total) GeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sin^2 \theta_{W}$</th>
<th>$\pm 0.000029 m_{\text{top}}$</th>
<th>$\pm 0.000015 m_{Z}$</th>
<th>± 0.000035 (QED)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\pm 0.000010 \alpha_{S}$</td>
<td>$\pm 0.000001 m_{H}$</td>
<td>± 0.000047 (theory)</td>
</tr>
<tr>
<td></td>
<td>± 0.00007 (total)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Parametric uncertainties and missing higher orders in theoretical calculations:
 - Are of the same order
 - Smaller than experimental uncertainties
Precision electroweak physics at FCC-ee (13)

- Most of the parametric uncertainties will reduce at the FCC-ee
 - New generation of theoretical calculations is necessary to gain a factor 10 in precision
 - To match the precision of the direct FCC-ee measurements

\[
\begin{align*}
\mathit{m}_W &= 80.3584\pm0.0001 & \mathit{m}_{\text{top}} &= \pm0.0002 & \mathit{m}_Z &= \pm0.0003 \\
&= 80.358\pm0.005 & \alpha_S &= \pm0.0000 & m_{\text{H}} &= \pm0.0040_{\text{theory}} \text{GeV} \\
\sin^2 \theta_W^\text{eff} &= 0.231488\pm0.000001 & \mathit{m}_{\text{top}} &= \pm0.00001 & \mathit{m}_Z &= \pm0.00008 \\
&= 0.23149\pm0.00006 & \alpha_S &= \pm0.000001 & m_{\text{H}} &= \pm0.000047_{\text{theory}} \\
\end{align*}
\]

- Will require calculations up to three or four loops to gain an order of magnitude
 - Might need a new paradigm in the actual computing methods
 - Lots of interesting work for future generations of theorists (you?)
Current tensions (several 2-3 σ deviations) of LHCb data with SM predictions

- In particular, lepton flavour universality is challenged in $b \rightarrow s \ell^+\ell^-$ transitions
 - For example, the rates of $B^0 (B^+) \rightarrow K^{*0} (K^+) \ell^+\ell^-$ are different for $\ell = e$ and $\ell = \mu$
 - Differences are also observed in the lepton angular distributions
- This effect, if real, could be enhanced for $\ell = \tau$, in $B \rightarrow K^{(*)} \tau^+\tau^-$
 - Extremely challenging in hadron colliders
 - With $10^{12} Z \rightarrow b\bar{b}$, FCC-ee is beyond any foreseeable competition
 - Decay can be fully reconstructed
 - Full angular analysis possible

Also sensitive to new physics in $B_S \rightarrow \mu^+\mu^-$

- None found yet at the LHC (~50 events)
 - Expect a few 1000's by the end of LHC
- $B_S \rightarrow \tau^+\tau^-$ is 250 times more abundant
 - But almost hopeless at the LHC
- Again, FCC-ee is beyond any foreseeable competition
 - Several 100,000 events expected – reconstruction efficiency under study

\[BR(B_S^0 \rightarrow \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \sim \text{SM} \]
FCC-ee: Opportunities for discoveries

- Searches for new physics through rare decays
 - $5 \times 10^{12} Z, 10^{12} b, c$ and $10^{11} \tau$: A fantastic potential that remains to be explored
 - E.g., search for LVF Z decays: $Z \rightarrow e\mu, Z \rightarrow e\tau, Z \rightarrow \mu\tau$
 - Sensitivities down to 10^{-9} (four orders of magnitude better than today’s $\sim 10^{-5}$!)
 - E.g., search for right-handed neutrino in Z decays

$$Z \rightarrow N\nu_i, \quad \text{with} \quad N \rightarrow W^*l \text{ or } Z^*\nu_j$$

- Number of events depend on mixing between N and ν_i, and on m_N
High Energy e^+e^- Physics

CLIC

Luminosity [10^{34} cm2 s$^{-1}$] vs \sqrt{s} [GeV]

- Z (91.2 GeV): $4.0 \times 10^{36} - 4.6 \times 10^{36}$ cm2 s$^{-1}$
- W^+W^- (161 GeV): $5.0 \times 10^{35} - 5.6 \times 10^{35}$ cm2 s$^{-1}$
- HZ (240 GeV): $1.4 \times 10^{35} - 1.7 \times 10^{35}$ cm2 s$^{-1}$
- H (250 GeV): 1.5×10^{34} cm2 s$^{-1}$
- $t\bar{t}$ (365 GeV): $2.8 \times 10^{34} - 3.1 \times 10^{34}$ cm2 s$^{-1}$
- $t\bar{t}$ (350 GeV): 2.4×10^{34} cm2 s$^{-1}$
- FCC-ee (Baseline, 2 IPs)
- LEP3 (Baseline, 4 IPs)
- ILC (Baseline)
- CLIC (Baseline)
- CEPC (Baseline, 2 IPs)
High Energy e⁺e⁻ Physics

- Luminosity targets for CLIC: 0.6 ab⁻¹ @ 380 TeV; 1.5 ab⁻¹ @ 1.5 TeV; 3 ab⁻¹ @ 3 TeV
- In original design, ILC kept compatible with a later energy upgrade to 1 TeV
 - Luminosity target for ILC at 1 TeV: ~2 ab⁻¹
Why do precision Higgs physics at high \sqrt{s}?
- Precision achieved with e^+e^- colliders at $\sqrt{s}=240$-350 GeV: 0.1% - 1%
 - Superior to what can be done at higher energy
 - σ_{HZ} decreases, kinematics less favourable, backgrounds increase, ...

However ...
- Some production processes are not directly accessible at low-energy e^+e^- colliders
 - Hence more couplings might become measurable at larger energy
 - Htt, HHH, HHHH, ...

![Graph showing the cross-sections of various Higgs production processes as a function of \sqrt{s}.]
Achievable precisions

<table>
<thead>
<tr>
<th>Collider</th>
<th>HL-LHC</th>
<th>CLIC 1-3 TeV</th>
<th>FCC-ee (*)</th>
<th>FCC-ee+hh (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta g_{Htt}/g_{Htt}$</td>
<td>4.2%</td>
<td>2-4%</td>
<td>10%</td>
<td><1%</td>
</tr>
<tr>
<td>$\Delta g_{HHH}/g_{HHH}$</td>
<td>30-50%</td>
<td>10-15%</td>
<td>40%</td>
<td>5-10%</td>
</tr>
</tbody>
</table>

Combined CLIC Higgs results

- 380 GeV; 1.5 TeV, 3.0 TeV

Full CLIC program, ~5 yrs of running at each stage
- Precision down to ±1% for most couplings
- Accuracy on Higgs width: ±3.6%

Model-independent

(*) indirect
Unique opportunity to probe new particles with masses below 1.5 TeV

- If found, very good mass resolution

"model I", 3 TeV:
 - Squarks
 - Heavy Higgs

"model II", 3 TeV:
 - Smuons, selectrons
 - Gauginos

"model III", 1.4 TeV:
 - Smuons, selectrons
 - Staus, Gauginos

Wider capability than only SUSY: reconstructed particles can be interpreted as “states of given mass, spin and quantum numbers”

In general, \(O(1\%)\) precision on masses and production cross sections found
BSM example: Z’ via indirect measurement

Minimal anomaly-free Z’ model

\[Q_f = g_Y'(Y_f) + g'_{BL}(B-L)_f \]

Observables:
- Total e^+e^- → \(\mu^+\mu^- \) cross section
- Forward-backward asymmetry
- Left-right asymmetry
 (with ±80% e^- polarisation)

- If LHC discovers Z’ (e.g. for \(M_{Z'} = 5 \) TeV)
 - CLIC precision measurement of effective couplings
- Otherwise:
 - CLIC discovery reach up to tens of TeV
 (depending on the couplings)
Instrumentation

Detectors for e^+e^- physics
Detectors e^+e^- colliders

- We know today how to build a detector for e^+e^- precision physics
 - Experience with LEP detectors and 20-years R&D with ILC/CLIC detectors

- Compared to LHC, less challenging w.r.t. radiation damage, pile-up, etc.
- However, need ultimate systematic precision to match the formidable statistical precision
 - Remember, up to 6×10^{12} Z decays
Typical Modern e⁺e⁻ Detector

B-field: 2-5 Tesla
- Limited to 2 Tesla at FCC-ee due to the 30 mrad crossing angle

Calorimetry:
- Jet energy \(\frac{\sigma_E}{E} \approx 3 - 4\% \)

Momentum: \((1/10 \times LEP)\)
- \(\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1} \)

Impact parameter: \((1/3 \times SLD)\)
- e.g. b/c-tagging
 - \(\sigma_{r\phi} = 5 \oplus 10/(p\sin^3\theta) \mu\text{m} \)

Hermetic: down to \(\theta \approx 5 \text{ mrad} \)
- Not possible with 30 mrad crossing angle, however
Thinking out of the box

Muon Colliders
Why muon colliders?

- Muons are leptons (like electrons)
 - Collisions at the full energy, small physics background, \((E,p)\) conservation
 - Muons can \textit{a priori} do all what electrons can do
- Muons are heavy (like protons)
 - Negligible synchrotron radiation, no beamstrahlung
 - Small circular colliders, up to large \(\sqrt{s}\)
 - Excellent energy definition (up to a few \(10^{-5}\))
 - Large direct coupling to the Higgs boson
 - Unique \(s\)-channel Higgs factory at \(\sqrt{s} = 125.093\) GeV
- Muons are naturally longitudinally polarized (100%)
 - Because arising from \(\pi^\pm\) decays to \(\mu^\pm\nu_\mu\)
 - Ultra-precise beam energy and beam energy spread measurement
- Muons eventually decay (in 2.2 \(\mu s\)) to \(e\nu_\mu\bar{\nu}_e\)
 - Outstanding neutrino physics programme
 - Muon colliders could be the natural successors of neutrino factories?
Muon colliders challenges

- Muons decay: Produce, Collect, Cool, Accelerate and Collide them *fast*!

- Intense proton driver to get the adequate number of muons
 - At least 4 MW for the desired muon luminosities
- Robust target to not evaporate at the first proton bunch
 - Re-circulating liquid metal
- Efficient muon collector from pion decays
 - Magnetic fields of 20T
- Unique 6D muon cooling
 - To reduce beam sizes and beam energy spread
- Fast acceleration and injection into circular ring(s)

All these aspects are at the level of intense R&D. Will require decades to demonstrate feasibility.
Muon collider challenges since 2014?

- Clever alternative muon source

- Intense e\(^+\) beam with \(E \approx 45\) GeV
 - 100 kW for the desired muon intensity

- Non-destructive target for e\(^+\)e\(^-\) \(\rightarrow\) \(\mu^+\mu^-\)
 - Keep the e\(^+\) beam in a ring
 - Possible synergy with FCC-ee
 - Energy Recovery Linac is also a possibility

- Production at \(\mu^+\mu^-\) threshold (\(\sqrt{s} \approx 2\) m\(_\mu\))
 - Quasi-monocromatic muons, much less need for cooling
 - Except for a Higgs factory
 - Not obvious it is possible to cool at 23 GeV anyway??

- Fast acceleration and injection into circular ring(s) remain as in the proton-driver option
Muon collider optimal circumference(s)

- **Muon decay**: Minimize the ring circumference
 - To allow the produced muons to collide as many times as possible before they decay
 - Optimal ring size is proportional to E_{μ}. With 14 T state-of-the-art dipoles:

<table>
<thead>
<tr>
<th>√s</th>
<th>91 GeV</th>
<th>125 GeV</th>
<th>161 GeV</th>
<th>350 GeV</th>
<th>6 TeV</th>
<th>24 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = \gamma \tau_m$</td>
<td>0.94 ms</td>
<td>1.30 ms</td>
<td>1.67 ms</td>
<td>3.64 ms</td>
<td>62.3 ms</td>
<td>249 ms</td>
</tr>
<tr>
<td>$L = \gamma \beta c \tau_m$</td>
<td>283 km</td>
<td>389 km</td>
<td>501 km</td>
<td>1090 km</td>
<td>18700 km</td>
<td>74000 km</td>
</tr>
<tr>
<td>Ring</td>
<td>100 m</td>
<td>140 m</td>
<td>180 m</td>
<td>390 m</td>
<td>6.6 km</td>
<td>27 km</td>
</tr>
<tr>
<td>N_{turns}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~2800 turns</td>
<td></td>
</tr>
</tbody>
</table>

- One ring per centre-of-mass energy
 - Two very small rings for precision studies
 - One for Z and H factories (140 m circumference)
 - One for W and top pair thresholds (390 m circumference)
 - Larger ring(s) for the energy frontier
 - √s = 6 TeV can fit, for example, in the Tevatron tunnel (6.6 km circumference)
 - √s = 24 TeV can fit in the LHC tunnel
 - Plus a number of rings for first stages of fast acceleration
Challenges for the Higgs factory

- Γ_H is small (4.2 MeV in the SM)
 - Similar or smaller beam energy spread is required (3×10^{-5})
 - Fast longitudinal cooling to reduce energy spread
 - Beam energy reproducibility must be at the same level or better

- $\sigma(\mu^+\mu^-\rightarrow H)$ is about 20 pb
 - Luminosity must be at the level of $1.6 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ for the same number of Higgs bosons as ILC ...
 - and at the level of $1.6 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ for the same number of Higgs bosons as FCC-ee
 - Fast transverse cooling to reduce beam spot dimensions
 - And the Higgs bosons produced are not tagged with a Z anyway ...

- Problem
 - Longitudinal and transverse cooling are antagonistic
 - Luminosity is limited (as of today’s knowledge) to a few $10^{31} \text{ cm}^{-2}\text{s}^{-1}$
Muon collider as a Higgs factory (3)

- **Physics performance of a Higgs factory**
 - Scan of Higgs resonance in the inclusive $b\bar{b}$ and WW final states
 - Ten years of data taking at 10^{31} cm$^{-2}$s$^{-1}$, just count events

- Measure Γ_H to 5% in 10 years (cf. 4% at ILC, <1% at FCC-ee)
 - Only way to see a structure in the resonance (several Higgs bosons?)

- Measure $\sigma_{\text{peak}} \sim BR_{\mu\mu}$ to 2-3% in 10 years

- Other expected measurement on the figures
Muon collider as a Higgs factory (4)

- Summary of precision measurements (after ~10 years of running)

<table>
<thead>
<tr>
<th>Error on</th>
<th>μμ collider</th>
<th>ILC$_{250}$</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_H (MeV)</td>
<td>0.06</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Γ_H (MeV)</td>
<td>0.17</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>g_{Hbb}</td>
<td>2.3%</td>
<td>1.8%</td>
<td>0.68%</td>
</tr>
<tr>
<td>g_{HWW}</td>
<td>2.2%</td>
<td>1.7%</td>
<td>0.47%</td>
</tr>
<tr>
<td>$g_{H\tau\tau}$</td>
<td>5%</td>
<td>1.9%</td>
<td>0.80%</td>
</tr>
<tr>
<td>$g_{H\gamma\gamma}$</td>
<td>10%</td>
<td>6.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>$g_{H\mu\mu}$</td>
<td>2.1%</td>
<td>13%</td>
<td>8.6%</td>
</tr>
<tr>
<td>g_{HZZ}</td>
<td>-</td>
<td>0.35%</td>
<td>0.22%</td>
</tr>
<tr>
<td>g_{Hcc}</td>
<td>-</td>
<td>2.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td>g_{Hgg}</td>
<td>-</td>
<td>2.2%</td>
<td>1.0%</td>
</tr>
<tr>
<td>BR_{invis}</td>
<td>-</td>
<td><0.5%</td>
<td><0.1%</td>
</tr>
</tbody>
</table>

- Note: BR($H \rightarrow \mu\mu$) can be also measured with % precision at FCC-hh (Will be already 10% after LHC)

Not obvious what is the practical use of such high precision on m_H

The Higgs width is best measured at ee colliders

These Higgs couplings are best measured at ee colliders

The Higgs coupling to muons is the added value of a μμ collider

These Higgs couplings are only measured at ee colliders *)
Muon colliders at the energy frontier

- Muon colliders might be a solution for high energy in the (far?) future
 - Many challenges to solve with sustained R&D and innovative thinking, as to
 - Increase luminosity for precision studies
 - Solve the radiation hazard at high energy (decay neutrino interactions in Earth)
 - Target luminosity competitive with CLIC above 2-3 TeV
 - With the possibility of several IPs

![Circular Muons](image1)

![Linear Muons](image2)

![Circular Luminosity per wall plug power unit](image3)

![Linear Luminosity per wall plug power unit](image4)
Muon colliders: Summary

- A muon collider may be the best way to get lepton collisions at $\sqrt{s} \geq 3$ TeV
 - Much R&D remain in, e.g., muon cooling/acceleration
- A muon collider at $\sqrt{s} = 125$ GeV is a very pretty Higgs factory ($\mu^+\mu^- \rightarrow H$)
 - But not necessarily the one we need
 - If $H(125)$ is a single particle, the process $e^+e^- \rightarrow HZ @ 240$ GeV is better suited
 - In particular, the Higgs width can be measured very well in e^+e^- collisions
 - A muon collider can also do that, but much higher luminosity would be necessary
 - At least two orders of magnitude – limited by the proton/positron source
- Several quasi-degenerate Higgs bosons is a strong case for $\mu\mu$ Higgs factory
 - If Δm is between 4 MeV (Γ_H) and ~ 100 MeV (LHC resolution)
 - Such a situation may occur with two Higgs doublets, and quasi-degenerate H & A
 - Isolate the two peaks and perform nice CP studies!
- A muon collider at $\sqrt{s} > 2 m_H$ provides the only way to *cleanly* probe HHH coupling

- A muon collider is the natural second step of neutrino factories
- Conclusion: don’t write them off completely, but don’t oversell them!
Rounding off
Summary and Conclusions
Summary & Conclusions (1)

- Since LEP, there has been a dramatic development in e^+e^- accelerator technology
 - Linear colliders: Energy reach up to $\sqrt{s} = 3$ TeV
 - Circular colliders: Increase of instantaneous luminosity be 4-5 orders of magnitude
 - For $\sqrt{s} < 400$ GeV, circular colliders provide competitive luminosity compared to linear
 - Repeat of LEP1 programme every ~5 min!
- With the discovery of the light Higgs boson and the non-discovery (so far) of new heavier states, e^+e^- communities are now zooming in on the $\sqrt{s} < 400$ GeV region
 - ILC: Higgs factory at $\sqrt{s} = 250$ GeV as first stage (15 years)
 - Possibly later upgraded to $\sqrt{s} = 500$ GeV (and $\sqrt{s} = 1$ TeV)
 - CLIC: “Affordable” Higgs/top factory at $\sqrt{s} = 380$ GeV as first stage
 - Possibly later upgraded to $\sqrt{s} = 1.5$ TeV (and $\sqrt{s} = 3$ TeV)
- A e^+e^- Higgs factory with $\mathcal{O}(10^6)$ Higgs decays provided sub-% level measurement of (most) Higgs couplings
 - Strong New Physics reach!
- Electroweak precision measurements provide a strong test of SM
 - A e^+e^- collider with $90 < \sqrt{s} < 370$-500 GeV could improve precision of all electroweak parameters by 1 – 2 orders of magnitude
 - Ultimate precision for Z, W, Higgs, and top
 - Strong New Physics reach!
Combined, the Higgs programme and the Electroweak Precision programme provides the ultimate precision test of the Standard model.

- The two programmes are largely complementary and test independent directions in theory space.
- Sensitivity to New Physics all the way up to ~75 TeV.
Muons provides a potential interesting option for long-term future high energy lepton colliders

- Without major technological breakthroughs they unfortunately do not provide sufficient luminosity to be interesting as a Higgs factory
- Very clear physics case for an e^+e^- collider with $90 < \sqrt{s} < 370$-500 GeV
- Precision Higgs and electroweak physics
- Much harder to make physics case for e^+e^- colliders with $\sqrt{s} > 370$-500 GeV
- At least without clear evidence for accessible new particles
 - Produced copiously in e^+e^- or $\gamma\gamma$ collisions
- Need serious assessment of relative merits of ILC and FCC-ee
 - As precision machines – as we have done in this series of lectures
 - Remember: Precise EW measurements of Z, W, and top provides tests of the SM complementary and competitive in strength to those of a Higgs factory;
 - In that respect, FCC-ee is a unique facility in providing both
 - And in paves the way for the FCC-hh (like LEP paved the way for the LHC)
- Exploration of energy frontier seems best done with a hadron collider
 - e.g., the 100 TeV FCC-hh proton-proton collider
Draft FCC-ee Schedule

Strategy Update 2026 – assumed project decision

Technical Design Phase

CE FCC-ee ring + injector

Injector

Installation + test FCC-ee

No time gap between HL-LHC and FCC-ee data taking !!

Two separate rings for e\(^+\) and e\(^-\) (# bunches)
A booster for continuous top-up (lifetime)
Asymmetric interaction region (SR)
Crossing angle 30 mrad

0.6 m

30 mrad

Ring 2

Ring 1

RF

RF

Mogens Dam / NBI Copenhagen

Physics at Lepton Colliders

26 - 27 July, 2018

43
End of the second lecture

Questions...
“No doubt that future high energy colliders are extremely challenging projects.

However, the correct approach, as scientists, is not to abandon our exploratory spirit, nor give in to financial and technical challenges. The correct approach is to use our creativity to develop the technologies needed to make future projects financially and technically affordable.”

Fabiola Gianotti, DG CERN
Extra Material
- Optimized length: 97.5 km
 - Accessibility, rock type, shaft depth, etc.
 - Tried different options from 80 to 100 km
- Tunneling
 - Molasse 90% (easy to dig)
 - Limestone 5%, Moraines 5% (tougher)
- Shallow implementation
 - 30m below Leman lakebed
 - Only one very deep shaft (F, 476m)
 - Alternatives studied (e.g. inclined access)
FCC-ee Machine Parameters

<table>
<thead>
<tr>
<th>FCC-ee parameters</th>
<th>Z</th>
<th>W⁺W⁻</th>
<th>ZH</th>
<th>ttbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.6</td>
<td>80</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>Luminosity / IP</td>
<td>10³⁴ cm² s⁻¹</td>
<td>230</td>
<td>28</td>
<td>8.5</td>
</tr>
<tr>
<td>Beam current</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1390</td>
<td>147</td>
<td>29</td>
<td>6.4</td>
</tr>
<tr>
<td>Bunches per beam</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16640</td>
<td>2000</td>
<td>328</td>
<td>59</td>
</tr>
<tr>
<td>Average bunch spacing</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.6</td>
<td>163</td>
<td>994</td>
<td>2763</td>
</tr>
<tr>
<td>Bunch population</td>
<td>10¹¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Horizontal emittance εₓ</td>
<td>nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.27</td>
<td>0.84</td>
<td>0.63</td>
<td>1.34</td>
</tr>
<tr>
<td>Vertical emittance εᵧ</td>
<td>pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.3</td>
<td>1.46</td>
<td>2.7</td>
</tr>
<tr>
<td>βₓ⁺ / βᵧ⁺</td>
<td>m / mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15 / 0.8</td>
<td>0.2 / 1.0</td>
<td>0.3 / 1.0</td>
<td>1.0 / 1.6</td>
</tr>
<tr>
<td>Beam size at IP:</td>
<td>µm / nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σₓ⁺ / σᵧ⁺</td>
<td>6.4 / 28</td>
<td>13 / 41</td>
<td>13.7 / 36</td>
<td>36.7 / 66</td>
</tr>
<tr>
<td>Energy spread: SR / total (w BS)</td>
<td>%</td>
<td>0.038 / 0.132</td>
<td>0.066 / 0.131</td>
<td>0.099 / 0.165</td>
</tr>
<tr>
<td>Bunch length: SR / total</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 / 12.1</td>
<td>3 / 6.0</td>
<td>3.15 / 5.3</td>
<td>2.75 / 3.82</td>
</tr>
<tr>
<td>Energy loss per turn</td>
<td>GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>0.34</td>
<td>1.72</td>
<td>7.8</td>
</tr>
<tr>
<td>RF Voltage /station</td>
<td>GV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.75</td>
<td>2.0</td>
<td>4.5 / 4</td>
</tr>
<tr>
<td>Longitudinal damping time</td>
<td>turns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1273</td>
<td>236</td>
<td>70.3</td>
<td>23.1</td>
</tr>
<tr>
<td>Acceptance RF / energy (DA)</td>
<td>%</td>
<td>1.9 / ±1.3</td>
<td>2.3 / ±1.3</td>
<td>2.3 / ±1.7</td>
</tr>
<tr>
<td>Rad. Bhabha / actual Beamstr. Lifetime</td>
<td>min</td>
<td>68 / > 200</td>
<td>59 / >200</td>
<td>38 / 18</td>
</tr>
<tr>
<td>Beam-beam parameter ξₓ / ξᵧ</td>
<td>mm</td>
<td>0.004 / 0.133</td>
<td>0.01 / 0.141</td>
<td>0.016 / 0.118</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>0.85</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Interaction region length</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
</tbody>
</table>
The RF system needs to compensate for 100 MW SR losses

- Corresponds to 200 MW electric power with 50% RF power sources (klystrons)
 - Klystron efficiency was ~55% at LEP2
- Recent (2015) breakthroughs in klystron design promise 90% efficiency
 - Assume 85% will be achieved and take 10 – 20% margins

For comparison

- CLIC: 250 MW (at 380 GeV) to 580 MW (at 3 TeV)