Overview of Hadoop and Spark service at CERN

Zbigniew Baranowski, IT-DB Hadoop and Spark Service May 7th, 2018

Infrastructure data and metadata

- For a long time traditional RDBMS was up to the task
- Evolution of systems and new processing use cases greatly increased requirements for data store backend
 - More data generated (more sensors, higher frequencies)
 - > 100 GB/day
 - New use cases appeared e.g. analytics, machine learning
 - The initial design of the systems is not optimal for that

Result -> Hard to scale RBDMS to the new big data use cases

Why Hadoop?

- Already well establish in the industry and open source
- Distributed systems for data processing
 - Can operate at scale by design (shared nothing)
 - Typically on clusters of commodity-type servers/cloud
 - Many solutions target data analytics and data warehousing
 - Can do much more: data ingestion, streaming, machine learning

Hadoop Service at CERN

Hadoop Service at CERN IT (since 2013)

- Setup and run the infrastructure
- Provide consultancy
- Support user community

• Running for more than 4 years

Collaboration Se	ervices	🚱 Electronics D
🚱 Conference	Rooms	🙉 Mathematics
🧭 E-Mail	Normal since: 31 Aug 2015 11:	21 ID
🧭 Eduroam	Link to availability history	
🤣 Lync		ier
🍖 Sharepoint	Details:	ւթւ
Computer Secu	Cluster: Hadalytic (overall availab	oility: 100) elo
😪 Certificate	HDFS - Availability: 100	rm
🧭 Single Sigr	YARN - Availability: 100	ast
Data Analytics	Spark - Availability: 100	
	HBase - Availability: 100 Hive - Availability: 100	
A HADOOP	Impala - Availability: 100	
Database Servic	Cluster: LXHadoop (overall availa	Ap
Accelerato	HDFS - Availability: 100	int int
ra 🖓 Administra	YARN - Availability: 100	vic
🔗 Database (Hive - Availability: 100	
🔗 Database I	Cluster: Analytix (overall availabil	lity: 100) Tei
🔗 Experimen	HDFS - Availability: 100	
	YARN - Availability: 100	re
🍖 General Pu	opant intendent), 200	
Desktop Service	Hive - Availability: 100	tioı
🌏 Linux Desk	top	🚱 Load Balanci
🏹 Windows D	esktop	Messaging

Hadoop at CERN - Timeline

▶ 2013	> 2014	> 2015	> 2016	▶ 2017	► 2018	
Start Hadoop servio	pilot Hadoop	2 SQL-based	Rolling out HDFS	service	Adoption of Jupyter Notebooks (SWAN)	
-	Central IT Monitorin project moves to rojects Hadoop ATLAS	RDBMS- based projects	commits CI to use the I service P ^I IT Security			
CERN and CA	STOR	cluster	nstalled moves t Hadoop	o distr	doop ibution	

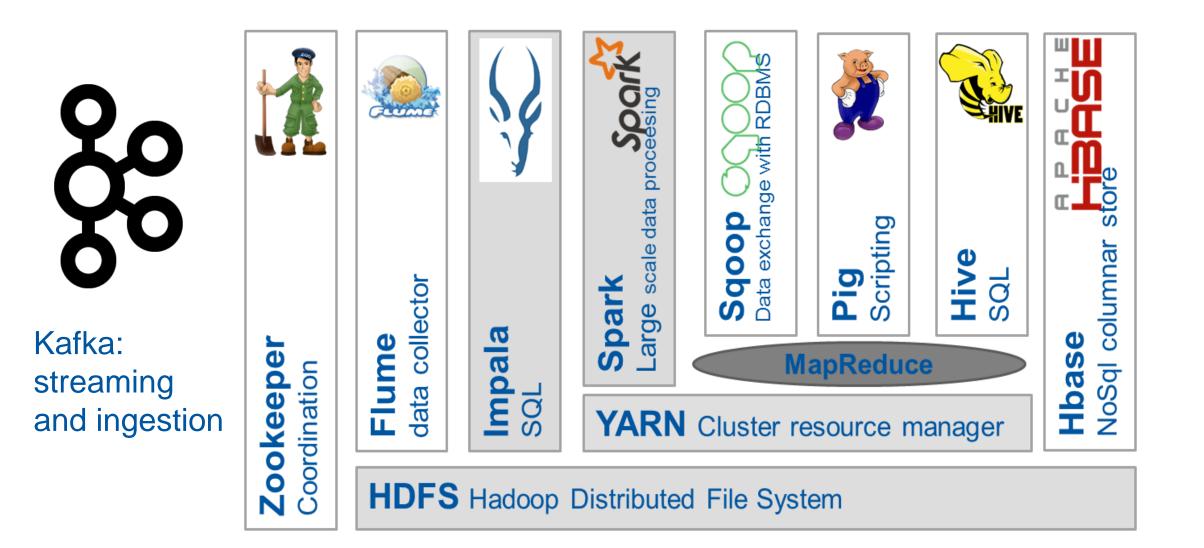
Hadoop production deployment @CERN

- Production systems deployed on bare-metal
- Development and QA deployed on VMs
- OS and Hadoop stack installation and configuration done with Puppet
 - CentOS 7
 - we use our custom puppet module to install Hadoop machines
- Hadoop distribution
 - Cloudera (CDH5) rpms (on 3 clusters)
 - CERN custom (based on Apache) distribution (on new 3 clusters)
 - we are in process of migration fully to our custom distribution
- HDFS, YARN and HBase in high availability mode
 - Enables online/rolling service operations (do not require full showdown of the service)
- All clusters run in a secure mode
 - Authentication with Kerberos
 - Authorization based on e-group membership
- New custom monitoring done with ElasticSearch + Grafana
 - Previously we were using Ganglia
 - OS-level monitoring done with the CERN IT monitoring system
- Alerting custom scripts with sensors
 - Checking availability and usability of Hadoop components
 - OS-level alerting done with the CERN IT monitoring system

HDFS Backups to Castor (CERN Storage) done with MapReduce (metadata stored in RDBMS)

cloudera

CASTOR


Hadoop production clusters at CERN

- 4 production clusters
- 2 development

Cluster Name	Configuration	Primary Usage
lxhadoop	18 nodes (Cores – 288,Mem – 912GB,Storage – 1.29 PB)	Experiment activities
analytix	42 nodes (Cores – 524,Mem – 6.9TB,Storage – 6 PB)	General Purpose
hadalytic	14 nodes (Cores – 196,Mem – 768GB,Storage – 2.15 PB)	SQL-oriented engines and data warehouse workloads
nxcals	20 nodes (Cores 480, Mem - 8 TB, Storage – 5 PB, 96GB in SSD)	Accelerator logging (NXCALS) project dedicated cluster

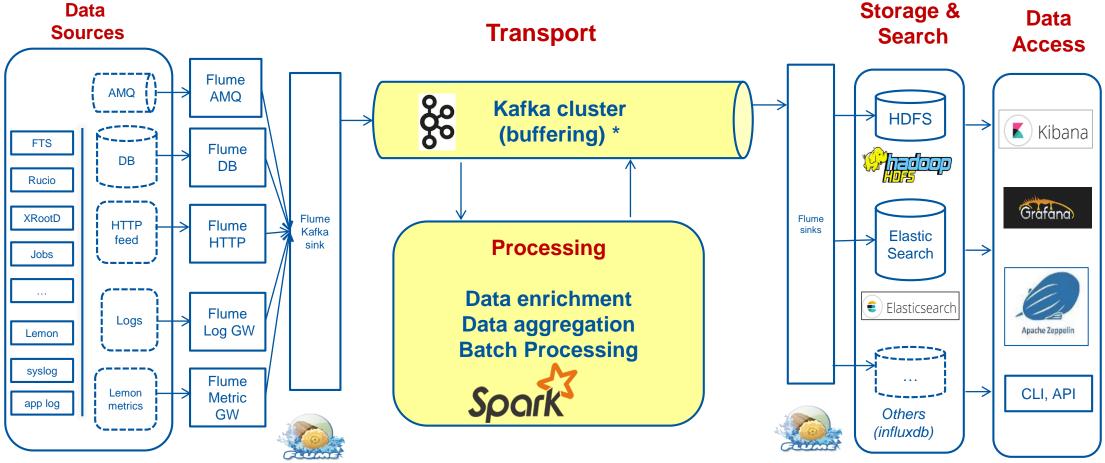
Overview of Available Components

Data volume (from backup stats July2017)

Application	Current Size	Daily Growth
IT Monitoring	420.5 TB	140 GB
IT Security	125.0 TB	2048 GB
NxCALS	10.0 TB	500 GB
ATLAS Rucio	125.0 TB	~200 GB
AWG	90.0 TB	~10 GB
CASTOR Logs	163.1 TB	~50 GB
WinCC OA	10.0 TB	25 GB
ATLAS EventIndex	250.0 TB	200 GB
USER HOME	150.0 TB	20 GB
Total	1.5 PB	4 TB

CERN Apache Hadoop distribution

- For core components
 - HDFS and YARN
 - Spark
 - HBase
- Better control of the core software stack
 - In-house compilation
 - Enabling non default features (compression algorithms, R for Spark)
 - Adding critical patches (that are not ported in upstream)
- Streamlined development
 - Available on Maven Central

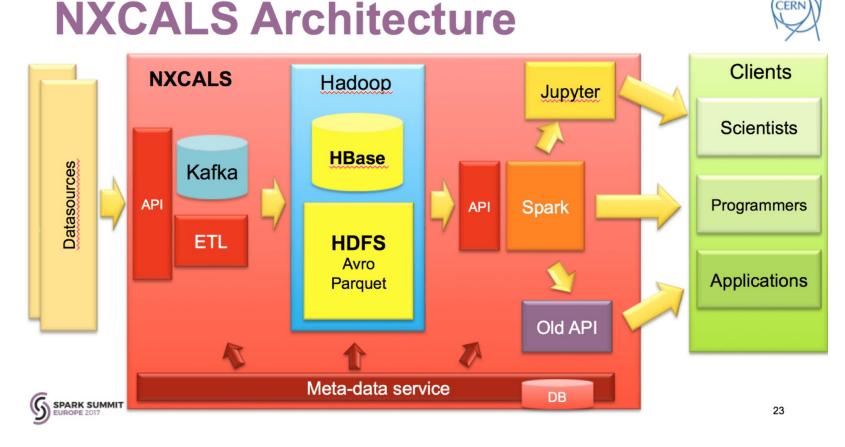


RPMs-based – similarly to Cloudera or Hortonworks

(Selected) Big data projects/use cases

New CERN IT Monitoring infrastructure

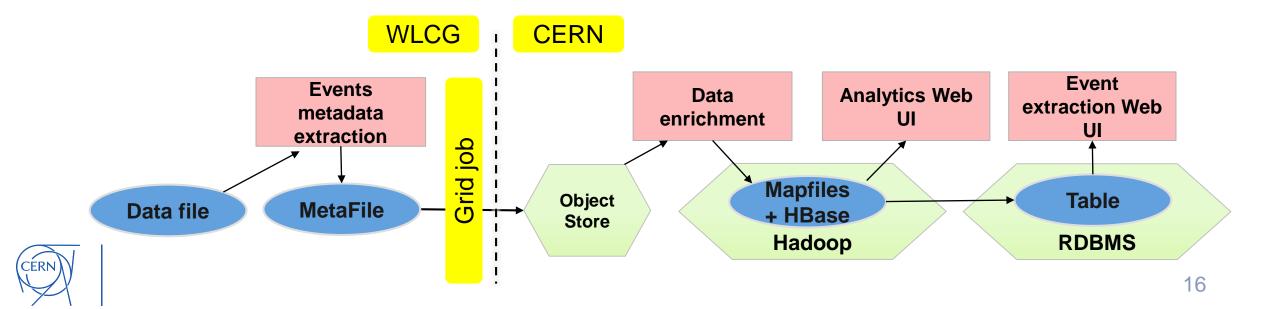
Critical for CC operations and WLCG



- Data now 200 GB/day, 200M events/day
- At scale 500 GB/day
- Proved effective in several occasions

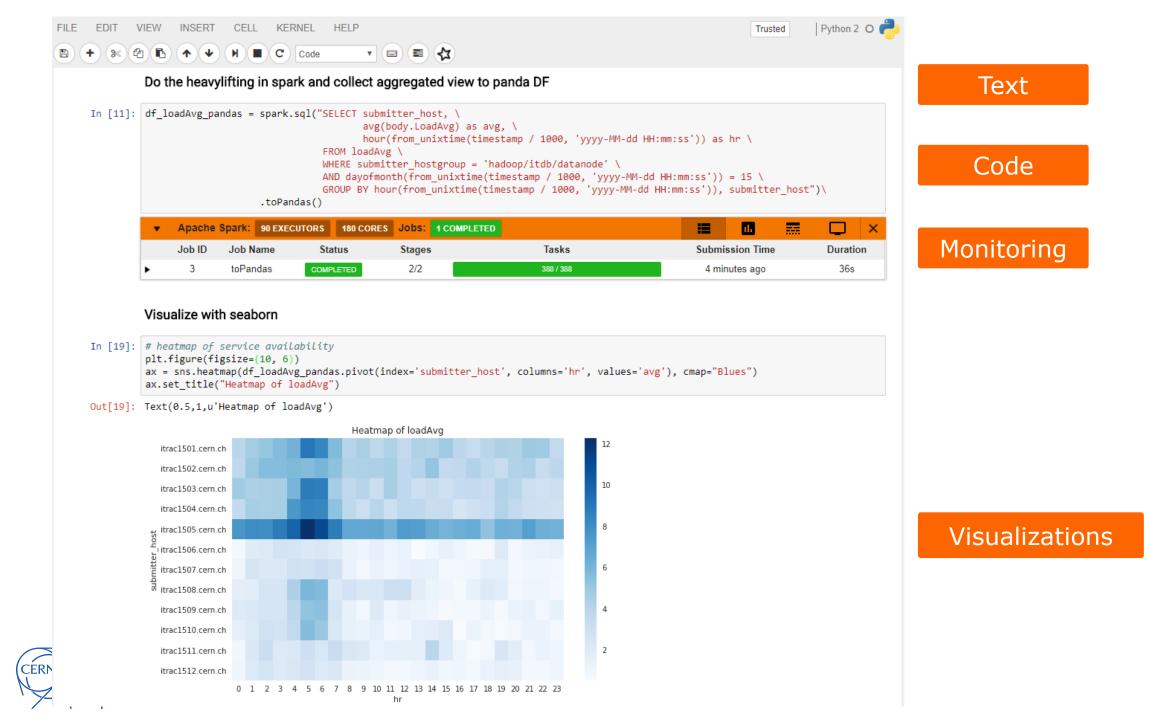
Credits: Alberto Aimar, IT-CM-MM

CERN

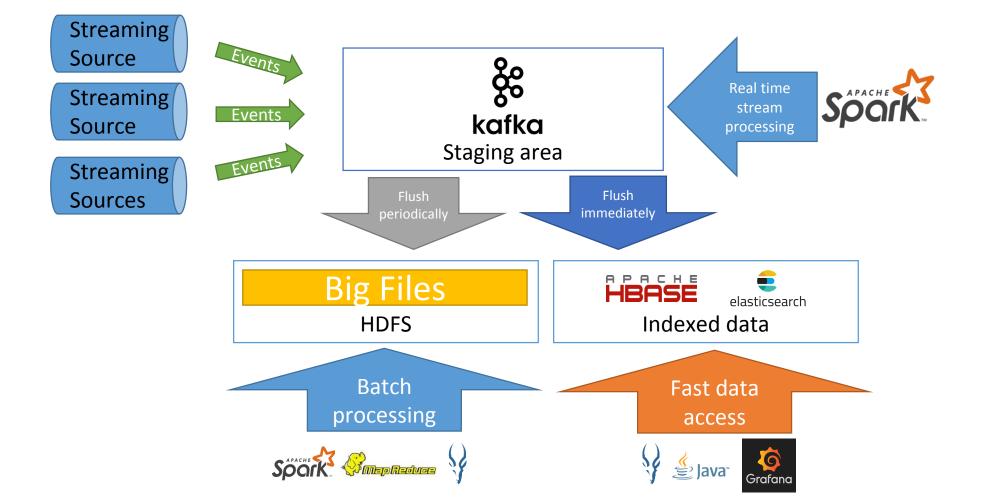

Next Gen. Archiver for Accelerator Logs Critical system for running LHC - 700 TB today, growing 200 TB/year Challenge: service level for critical production

The ATLAS EventIndex

- Catalogue of all collisions in the ATLAS detector
 - Over 120 billion of records, 150TB of data
 - Current ingestion rates 5kHz, 60TB/year


SWAN – Jupyter Notebooks On Demand

- Service for web based analysis (SWAN)
 - Developed at CERN, initially for physics analysis
- A web-based interactive interface and platform that combines code, equations, text and visualisations
 - Ideal for exploration, reproducibility, collaboration
- Fully Integrated with Spark and Hadoop at CERN
 - Python on Spark (PySpark) at scale
 - Modern, powerful and scalable platform for data analysis



Thoughts and trends observed

Data ingestion – is a challange

• Apache Kafka becomes a standard for modern scalable architectures

Visualization

- Nothing unified provided by for the ecosystem the open source community ecosystem
 - Some efforts with Hue are being done

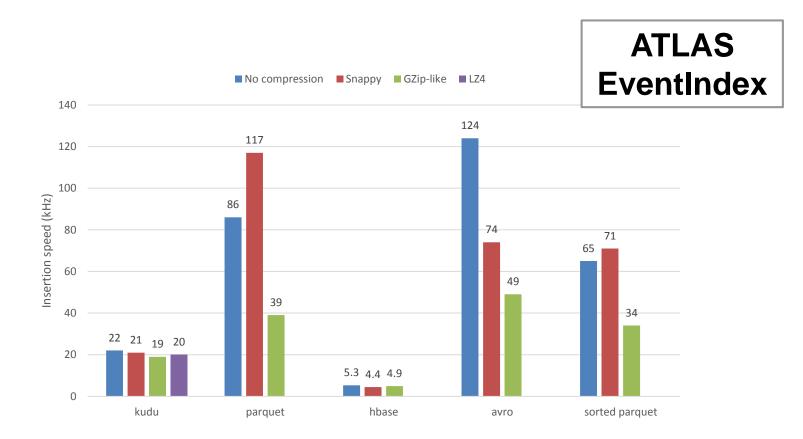
- Analytics
 - Jupyter Notebooks (pySpark)
 - Zeppelin (Scala Spark)

jupytei **Apache Zeppelin** Influx elasticsearch

- Live data
 - ElasticSearch or InfluxDB + Grafana/Kibana (data stored for limited duration)

Apache Parquet – an efficient columnar file format for HDFS

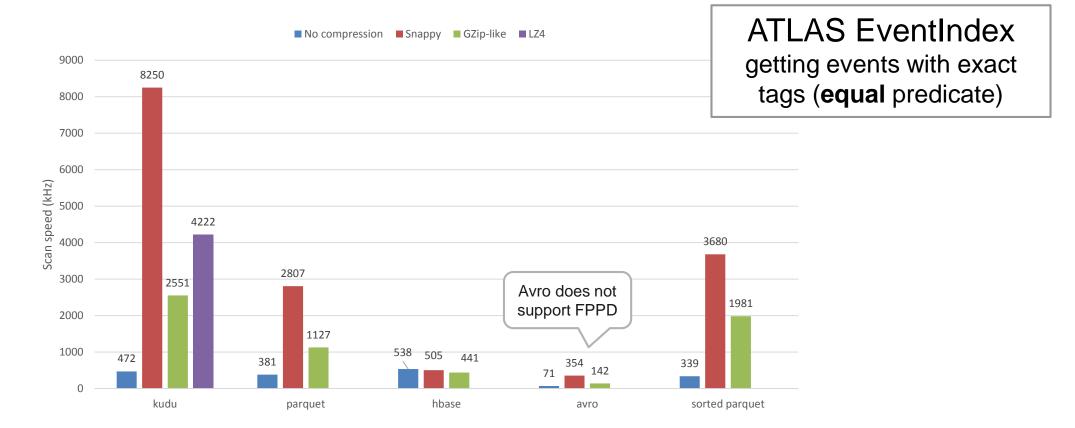
- Internal schema with multiple data types including nested ones
- Multiple encoding applicable on per column-bases
 - RLE, Dictionary, Delta, Bit packing
- Compressions supported
 - Snappy, gzip, LZO
- Column-level statistics per each block/rowgroup
- Advantages
 - Very compact up 10x smaller than a text-based file
 - Column (vertical) pruning -> less IO
 - Rows group (horizontal) pruning -> less IO
- Supported by most of modern big data processing frameworks
- Recommended for analytic workloads


Data packing by various formats

and compressions

Measured insertion speed

• Per client thread (the higher the better)



Data scanning efficiency (using Impala)

- By non-PK column per scanner thread (higher the better)
- With filter predicate push down

CERN

Hadoop and Spark on a private cloud?

- Appears to be a good solution when storage locality is not needed
 - Functional test and development
 - Non-IO intensive workloads
 - Reading from external storages (AFS, EOS, foreign HDFS)
- Spark clusters (without HDFS and YARN) on containers (Kubernetes)
 - possible candidates for Spark clusters for physics data processing reading from EOS (or from remote HDFS)
 - Streaming jobs reading from Kafka

Conclusions

- Hadoop, Spark, Kafka services at CERN IT
 - Analytics, streaming, logging/controls
- BigData is growing at CERN
 - Many projects started and running
 - The service is evolving
 - Experience and community
- The technologies evolves rapidly on that field
 - Opportunities and challenges

