

### Tools, Development and Selected Projects

J.P. Morgan - CERN Big Data Meeting

**Evangelos Motesnitsalis** 





# Tools and Development

#### Connecting the Old and the New

#### **Problem Definition**

















#### Hadoop – XRootD Connector

Connecting XrootD-based Storage Systems with Hadoop and Spark



A Java library that connects to the XrootD client via JNI



It reads files from the EOS Storage Service directly





Slower Read – Broader Data Access

https://github.com/cerndb/hadoop-xrootd



#### Spark - Root



A Scala library which implements DataSource for Apache Spark



Spark can read ROOT TTrees and infer their schema





Root files are imported to Spark Dataframes/Datasets/RDDs



Developed by DIANA-HEP

https://github.com/diana-hep/spark-root/



### **Future Plans**

## Spark on Kubernetes Service

#### Spark on Kubernetes Service

Leveraging the Kubernetes support in Spark 2.3



Prototype of Spark on Kubernetes over OpenStack and built spark images and tooling



Under active development



Work on the **cern-spark-service** python package [Early Alpha Release!]



https://pypi.python.org/pypi/cern-spark-service



#### Spark on Kubernetes Service

Leveraging the Kubernetes support in Spark 2.3



1. Create Kubernetes cluster and initialize its dependencies



2. Submit Spark jobs to Spark using **cern-spark-submit** python package



3. Our docker images will deploy and run the Spark application over Kubernetes as if it was on Hadoop/YARN





### **Analytics Platform**





### Selected Projects and Platforms

#### Data Center and WLCG Monitoring Systems



Critical for Data
Center operations
and WLCG



200M events/day 500 GB/day



Proved effective in several occasions





Credits: IT-CM-MM

#### Computer Security Intrusion Detection





Credits: CERN security team, IT-DI

#### CMS Data Reduction Facility

Performing Physics Analysis and Data Reduction with Apache Spark



Investigate new ways to analyse physics data and improve resource utilization and time-to-physics



We started scaling – goal is 1 PB



Until today, high energy physics analysis is done with the ROOT Framework



Root files are imported with « spark-root »



We now have fully functioning Analysis and Reduction examples tested over CMS Open Data (1 TB)



Files are accessed from the EOS Storage Service with the « Hadoop-XRootD Connector »



#### CMS Data Reduction Facility





Produce reduced data based on potential complicated user queries



If sucessful, this type of facility could be a big shift for High Energy Physics



Make High Energy Physics more open to the Big Data community





## Thank you

