

Vacuum stability at cryogenic temperature

WP4 - Activity at LNF Amsterdam, 12/04/2018

> Luisa Spallino Marco Angelucci Roberto Cimino

In March, during EuroCircol Meeting in Frascati

Thermal desorption measurements: preliminary results

Desorption processes of Ar from clean Cu and Laser Treated (LASE)-Cu

Amsterdam 12/04/18

Today, during the EuroCircol Meeting in Amsterdam

Summary of the main activities

- Dose calibration
- Temperature calibration
- Desorption calibration

>Thermal desorption measurements: data analysis

Amsterdam 12/04/18

Set-up and Strategy at LNF

EuroCirCol

(10, mpar) 6 (10, mpar) 1.0

40 60 80

- LNF-cryogenic manipulator
- Sample at 15-300 K

Temperature Programmed Desorption (**TPD**) measurements Equipment : QMS (Hiden HAL 101 Pic)

Luisa Spallino

Amsterdam 12/04/18

Electron Yield (SEY) measurements Equipment : Electron gun, Faraday cup

Secondary

ito Nazionale di Fisica Nuclea

Dose calibration

Gas dosing OLD set-up

Amsterdam 12/04/18

Luisa Spallino

Istituto Nazionale di Fisica Nuclea

Gas dosing NEW set-up

Near to the sample

Amsterdam 12/04/18

Luisa Spallino

Different local pressure on the sample

1s@1.33x10⁻⁶ mbar corresponds to

Far from the sample

Near to the sample

reehe

7

Amsterdam 12/04/18

desorption related to the manipulator

Amsterdam 12/04/18

Luisa Spallino

Temperature calibration

LNF-Cryogenic Manipulator

Measured Temperature

Amsterdam 12/04/18

Luisa Spallino

Measured Temperature (T*) Measured Temperature Sample Real Temperature (T)

Sample Real Temperature (T)

10

ISTITUTE VALUE AND A STATEMENT

EuroCirCol A key to New Physics

Ar Temperature Programmed Desorption

The **different desorption peaks** are experimental artefact

Amsterdam 12/04/18

Luisa Spallino

11

Istituto Nazionale di Fisica

Same Desorption temperature of Argon Thick Film (TF) on different substrates

> Ar TF desorbs at a unique T~30 K

> > 12

Fig. 1. Argon desorption spectra for increasing argon exposures onto various underlying "substrates": (a) clean Ni(111); (b) saturated chemisorbed $(\sqrt{7} \times \sqrt{7})$ R19.1° benzene layer on Ni(111); (c) saturated first physisorbed benzene layer on top of the chemisorbed layer. Adsorption temperature 22 K; heating to te 1 K/s. The "substrates" are schematically indicated above the corresponding TPD spectra.

M. Stichler et al.; Surface Science348 (1996) 370-378

EuroCirCol

Amsterdam 12/04/18

Amsterdam 12/04/18

Luisa Spallino

Ar Temperature Programmed Desorption

Peak 1: Desorption from sample ("hotter part" at T*) Peak 2: Desorption from Manipulator (at T)

The different desorption peaks are experimental artefact, not real...but <u>advantageous for us</u>!!!

The effective temperature of LCH sample is higher due to stainless steel core, so its desorption peak appears at a lower T* respect to Cu!

Luisa Spallino

EurocirCol A key to New Physics

T* shift

Istituto Nazionale di Fisica Nuclea

In March, during EuroCircol Meeting in Frascati

Thermal desorption measurements: preliminary results

Desorption processes of Ar from clean Cu and Laser Treated (LASE)-Cu

Amsterdam 12/04/18

Luisa Spallino

Synopsys of the raw data

CirCol

to New Physic

uro

Amsterdam 12/04/18

Thermal desorption measurements: data analysis

uroCirCol

Ar desorption from other part of the system

19

Istituto Nazionale di Fisica Nuclear

Ar desorption from sample

Amsterdam 12/04/18

Subtraction of the contribution accounting for the desorption from other part of the system

FEC

Amsterdam 12/04/18

Luisa Spallino

EurocirCol A key to New Physics

At a fixed gas dose, the desorption of Ar on flat substrate is decisive to single out both the sample and the spurious contribution at that dose

(FEC hheehe

Amsterdam 12/04/18

Luisa Spallino

21

lstituto

Nazionale di Fisica

On flat Cu Ar adsorbs due to the weak Ar-Cu and Ar-Ar Van der Waals interactions and the desorption curve consists of the sharp peak at T~30 K.

For the LASE-Cu substrate the Ar adsorption energy at the undercoordinated surface defect sites increases and desorption occurs at higher T. However, at high coverage, multilayer desorption at T~30 K is also observed.

Improvements in noble gas separation methodology: A nude cryogenic trap

Dempsey E. Lott III

Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA (dlott@whoi.edu)

Desorption processes in charcoal and other cryotraps

23

Amsterdam 12/04/18

At higher coverages the desorption is dominated by usual Ar/Ar Vander-Waals interaction

At low coverages the desorption is dominated by Ar/LASE interaction

24

Morphology of LASE-Cu by SEM

Highly rough and inhomogeneous surface with nanometric features (undercoordinated surface defect sites)

FEC

Amsterdam 12/04/18

Saturated vapour pressure from Honig and Hook (1960) (C2H6 Thibault et al.)

For ices dominated by Ar-LASE, Ar desorbs both at T~ 25-30 K and in a much wider range

WARNING: If confirmed, the use of highly porous materials at LT must be considered with great care!

Amsterdam 12/04/18

Outlook and future work

Technical work

Gas-line assemblyAssembly and test of the new heater

Istituto Nazionale di Fisica Nucleare

THANKS TO....

The team at LNF

E. La Francesca M. Angelucci R. Cimino R. Larciprete A. Liedl

Istituto Nazionale di Fisica Nucleare Divisione Ricerca: DAFNEL

27

Amsterdam 12/04/18

Luisa Spallino

DAΦNE-L