Xilinx FPGA transceiver study

Eduardo Mendes On behalf of the HPTD team (E. Mendes, S. Baron)

... many thanks to Jan Troska (CERN) and Paolo Novellini (Xilinx)

Motivation

- Investigation triggered by first CMS High Precision meeting
- Interesting to all LHC experiments
- Targeted Ultrascale+ GTH/GTY transceivers

- Phase-monitoring of FPGA-embedded TRx via e.g. DDMTD
- Phase relationship/stability across all TRx within one FPGA
- Phase relationship/stability across TRx in different FPGAs on single motherboard fed by same reference clock
- Can we relate jitter on high-speed serial link to jitter on recovered clock?

suggested work for CERN/ESE & Saclay

jan.troska@cern.ch

Outline

- Fixed and deterministic phase?
- Transmitter path
- Receiver path
- Phase monitoring aspects
- Conclusions

Fixed and deterministic phase?

- Phase of a transceiver changes with reset
 - What can we achieve nowadays with the techniques learnt from the experience of developing 'fixed-phase' FPGA transceiver cores (e.g. GBT-FPGA, TTC-PON)?
- A device potentially impacted by many other factors (temperature, voltage, fabric logic utilization/activity)
- Is it relevant? How 'fixed' a 'fixed phase' has to be?
 - Physics phase monitoring based on collision monitoring
 - Aspects to be considered: accuracy, 'refresh-rate'?
 - System-level impact?

Transmitter path

Transmitter path (no reset)

• Average: no reset - stable measurement

Transmitter path (reset at every acquisition)

- Buffer-Bypass: a.k.a. fixed latency (technique used for GBT-FPGA, TTC-PON)
- Average: reset at every acquisition

Xilinx FPGA transceiver study - eduardo.brandao.de.souza.mendes@cern.ch

Transmitter path – (solution?)

- Solution based on advanced proprietary features of Ultrascale+ GTH/GTY transceivers:

23/04/2018

Transmitter path – (solution?)

• Solution based on advanced proprietary features of Ultrascale+ GTH/GTY transceivers:

Phase-interpolator control

• FIFO filling-level

- Concept and close collaboration with Xilinx principal engineer (Paolo Novellini)
 - First implementation in software: time to reset ~ 1s
 - Hardware: expected very light FPGA core (most of the blocks are inside transceiver) and fast (~few ms)
- Many flavours possible (and other techniques)
 - Will be discussed in a report and delivered as a core in GIT (see ACES18 Sophie's talk)

Transmitter path – (reset at every acquisition)

- Results for first implementation (UI compensation):
 - Promising results which will be further verified for more channels/devices
- Average: reset at every acquisition

Receiver path

- Does it matter if it is cleaned by a PLL with 1kHz bandwidth?
- Repeatability in a programmable device?
- On-going study for fixed-phase

10⁴ Frequency Offset (Hz) 10^{6}

 10^{8}

 10^{2}

 10^{0}

Phase monitoring aspects

Phase monitoring aspects

• SerDes phase variations monitoring based on a clock-mirroring (on-going!)

 \rightarrow mirror paths are micro-paths inside the FPGA which will impact the measurement

→ DDMTD: <u>https://www.ohwr.org/projects/white-rabbit</u>

Phase monitoring aspects

- SerDes phase variations monitoring based on a clock-mirroring (on-going!)

concept

 \rightarrow mirror paths are micro-paths inside the FPGA which will impact the measurement

→ DDMTD: <u>https://www.ohwr.org/projects/white-rabbit</u>

LOOPBACK Phase Loopback (ps) $^{-1}$ Measured Scope Measured DDMTD -2 **TX ONLY** 1 Phase Tx (ps) 0 $^{-1}$ Measured Scope Measured DDMTD -2 ~3 days measurements

→ On-going work 23/04/2018

Conclusions

- We have a implemented a promising method (~25ps -> ~2ps pk-pk) for achieving a more stable phase over resets on Xilinx Ultrascale+ transceiver transmitters
 - To be further tested with more channels, devices
 - Is it relevant? How 'fixed' a 'fixed phase' has to be?
 - Physics phase monitoring based on collision monitoring
 - Aspects to be considered: accuracy, 'refresh-rate'?
 - System-level impact?
- Work in progress for the receiver path
- Investigating phase monitoring aspects on serial links

Transmitter path (no reset)

• Standard deviation: no reset - stable measurement

Transmitter path (reset at every acquisition)

• Standard deviation: reset at every acquisition - stable measurement

Transmitter path (GTY Ultrascale+)

Figure 3-30: TX Serial and Parallel Clock Divider

Receiver path (GTY Ultrascale+)

Figure 4-16: RX Serial and Parallel Clock Divider