

Detector Requirements and Experimental Conditions at CLIC

André Sailer on behalf of the CLICdp collaboration

CERN-EP-LCD

CLICdp Advisory Board April 17–18, 2018

ctc

Table of Contents

Beam-Beam-Effects and Backgrounds

Beam-Beam Effects
Beamstrahlung and Luminosity
Beam-Induced Backgrounds
CLIC Beam Parameters

Detector Requirements due to Beam and Backgrounds

Vertex Detector Readout and Power Pulsing Very Forward Region Calorimeter Endcaps

Background Mitigation Methods

Timing Cuts Jet Clustering

Luminosity Measurements

Absolute Luminosity Measurement Luminosity Spectrum Reconstruction

Summary

Section 1:

Beam-Beam-Effects and Backgrounds

Beam-Beam Effects
Beamstrahlung and Luminosity
Beam-Induced Backgrounds
CLIC Beam Parameters

Luminosity and Beam-Beam Effects

- Large luminosities require high bunch charge N and small beams $\sigma_{x/y/z}$ (given the other constraints from the accelerator) $L \propto \frac{N^2}{\sigma_x \sigma_y}$
- ► Leads to large electromagnetic fields during bunch crossing $B \propto \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}$
 - \blacktriangleright Use flat beams $\sigma_y \ll \sigma_{\scriptscriptstyle X}$
- ► The bunch particles are strongly deflected by the fields and radiate Beamstrahlung

N.b.: Factor 1000 between Y and Z!
Animated bunch crossing

- ▶ Beamstrahlung radiation leads to collisions far below the nominal centre-of-mass energy \sqrt{s}
 - Large fraction at nominal \sqrt{s}
- ▶ Luminosity spectrum $\mathcal{L}(E_1, E_2)$
- Collisions between $e^{\pm} \gamma$ and $\gamma \gamma$ Luminosity in 10^{34} cm⁻²s⁻¹

Collision	380 GeV	3 TeV
e^-e^+	1.51	6.35
$e^-\gamma$	0.80	5.05
$\gamma e^{\dot{+}}$	0.80	5.05
γγ	0.50	4.49

$\sqrt{s'}/\sqrt{s}$	380 GeV	3 TeV
> 0.99 > 0.90 > 0.80 > 0.70	58% 87% 96% 98.7%	36% 57% 69% 76.8%
> 0.50	99.96%	88.6%

- ▶ Beamstrahlung radiation leads to collisions far below the nominal centre-of-mass energy \sqrt{s}
 - Large fraction at nominal \sqrt{s}
- ▶ Luminosity spectrum $\mathcal{L}(E_1, E_2)$
- Collisions between $e^{\pm} \gamma$ and $\gamma \gamma$ Luminosity in 10^{34} cm⁻²s⁻¹

Collision	380 GeV	3 TeV
e^-e^+	1.51	6.35
$e^-\gamma$	0.80	5.05
$\gamma e^{\dot{+}}$	0.80	5.05
γγ	0.50	4.49

380 GeV	3 TeV
58%	36%
87%	57%
96%	69%
98.7%	76.8%
99.96%	88.6%
	58% 87% 96% 98.7%

- ▶ Beamstrahlung radiation leads to collisions far below the nominal centre-of-mass energy \sqrt{s}
 - Large fraction at nominal \sqrt{s}
- ▶ Luminosity spectrum $\mathcal{L}(E_1, E_2)$
- ► Collisions between e[±] γ and γγ Luminosity in 10³⁴cm⁻²s⁻¹

Collision	380 GeV	3 TeV
e^-e^+	1.51	6.35
$e^-\gamma$	0.80	5.05
γe^+	0.80	5.05
γγ	0.50	4.49

$\sqrt{s'}/\sqrt{s}$	380 GeV	3 TeV
> 0.99	58%	36%
> 0.90	87%	57%
> 0.80	96%	69%
> 0.70	98.7%	76.8%
> 0.50	99.96%	88.6%

- ▶ Beamstrahlung radiation leads to collisions far below the nominal centre-of-mass energy \sqrt{s}
 - Large fraction at nominal \sqrt{s}
- ▶ Luminosity spectrum $\mathcal{L}(E_1, E_2)$
- ► Collisions between e[±] γ and γγ Luminosity in 10³⁴cm⁻²s⁻¹

Collision	380 GeV	3 TeV
e^-e^+	1.51	6.35
$e^-\gamma$	0.80	5.05
γe^+	0.80	5.05
γγ	0.50	4.49

$\sqrt{s'}/\sqrt{s}$	380 GeV	3 TeV
> 0.99	58%	36%
> 0.90	87%	57%
> 0.80	96%	69%
> 0.70	98.7%	76.8%
> 0.50	99.96%	88.6%

Backgrounds I

 Beamstrahlung photons collide with beam particles or other photons

- ► Incoherent e⁺e[−] pairs
- ightharpoonup qq pairs in $\gamma\gamma \rightarrow Hadron$ events
- Incoherent pairs have largest concentration at small angles
- backgrounds strongly depend on centre-of-mass energy

Backgrounds I

 Beamstrahlung photons collide with beam particles or other photons

- ► Incoherent e⁺e[−] pairs
- ightharpoonup qq pairs in $\gamma\gamma \rightarrow Hadron$ events
- Incoherent pairs have largest concentration at small angles
- backgrounds strongly depend on centre-of-mass energy

Backgrounds I

 Beamstrahlung photons collide with beam particles or other photons

- ► Incoherent e⁺e[−] pairs
- ightharpoonup qq pairs in $\gamma\gamma \rightarrow Hadron$ events
- Incoherent pairs have largest concentration at small angles
- backgrounds strongly depend on centre-of-mass energy

Backgrounds II: Coherent Processes

- Real or virtual photons interact with the very strong fields to create e⁺e⁻ pairs
- ► Coherent processes only significant for $\sqrt{s} > 1$ TeV
- ► Coherent pairs limit the lower acceptance of the detector to 10 mrad around the outgoing beam-axis

CLIC Beam Parameters

- Very large gradient and room temperature copper cavities require short RF pulses of less than 200 ns
- ▶ Bunch spacing of $\Delta t = 0.5$ ns with ≈ 300 bunches per train at 50 Hz
- Short bunch spacing requires crossing angle θ_c to avoid parasitic collision
- Crab crossing scheme to avoid loss of geometrical overlap of colliding bunches

Par.	Unit	380 GeV	3 TeV
θ_c	mrad	16.5	20
$n_{\rm b}$		352	312
N		$5.2 \cdot 10^{9}$	$3.72 \cdot 10^{9}$
$\sigma_{\scriptscriptstyle X}$	nm	pprox 149	≈ 45
σ_{v}	nm	≈ 2.9	pprox 1
$\sigma_y \ \sigma_z$	μm	70	44
$\mathcal L$	$1/{\sf cm}^2{\sf s}^1$	$1.5 \cdot 10^{34}$	$5.9 \cdot 10^{34}$
$\mathcal{L}_{0.01}$	$1/\text{cm}^2\text{s}^1$	$0.9\cdot 10^{34}$	$2.0 \cdot 10^{34}$

Section 2:

Detector Requirements due to Beam and Backgrounds

Vertex Detector Readout and Power Pulsing Very Forward Region Calorimeter Endcaps

Vertex Detector Radius

- Large flux of low momentum particles from incoherent pairs limits the inner radius of the vertex detector
- ▶ Solenoid field reduces radius of particles
- ▶ Smaller radius possible at lower centre-of-mass energy

Rate of incoherent pair particles close to the interaction point for 3 TeV

Full simulations to obtain occupancies of all tracking detectors have been studied for $\gamma \to \text{hadron}$ events and incoherent pairs, see presentation by E. Sicking

Readout and Power Pulsing

- ► Short luminous time (<200 ns) and long gap between trains (20 ms)
- Record data during collision time, read data out between trains
- Triggerless read out: all data are recorded
- When data is not being read out, switch off the detector: Power Pulsing

More in the presentations on Vertex/tracker technologies (D. Dannheim) and on DAQ/readout considerations (E. Sicking)

Very Forward Region

- Crossing angle of 20 mrad between beam axes
- Minimal acceptance of a cone of 10 mrad half-opening due to coherent pairs at 3 TeV
- Forward e.m. calorimeters: LumiCal and BeamCal, ECal and HCal endcaps
- ▶ The BeamCal is located in the centre of the HCal endcap

clc

BeamCal and LumiCal

► The BeamCal (10–46 mrad) and LumiCal (39–134 mrad) are the most forward e.m. calorimeters

- ► BeamCal receives large energy deposits from incoherent pairs
 - Radiation dose: up to 1 MGy/yr and 10¹³ n_{eq}/yr/cm² (at 3 TeV)
- LumiCal just outside the background envelope, suffers from backscattering particles
 - Precise polar angle and energy reconstruction for luminosity measurement

Deposited energy per pad from 40 BX of 3 TeV incoherent pairs in layer 9

BeamCal and LumiCal

- ► The BeamCal (10–46 mrad) and LumiCal (39–134 mrad) are the most forward e.m. calorimeters
- BeamCal receives large energy deposits from incoherent pairs
 - ► Radiation dose: up to 1 MGy/yr and $10^{13} n_{eq}/yr/cm^2$ (at 3 TeV)
- LumiCal just outside the background envelope, suffers from backscattering particles
 - Precise polar angle and energy reconstruction for luminosity measurement

BeamCal and LumiCal

- ► The BeamCal (10–46 mrad) and LumiCal (39–134 mrad) are the most forward e.m. calorimeters
- BeamCal receives large energy deposits from incoherent pairs
 - ► Radiation dose: up to 1 MGy/yr and $10^{13} n_{eq}/yr/cm^2$ (at 3 TeV)
- LumiCal just outside the background envelope, suffers from backscattering particles
 - Precise polar angle and energy reconstruction for luminosity measurement

- The incoherent pairs showering in the BeamCal create a large neutron flux into the HCal endcap
- At the inner radius of the HCal endcap most cells see an energy deposit above 0.3 MIP per readout window

- The incoherent pairs showering in the BeamCal create a large neutron flux into the HCal endcap
- At the inner radius of the HCal endcap most cells see an energy deposit above 0.3 MIP per readout window

- The incoherent pairs showering in the BeamCal create a large neutron flux into the HCal endcap
- At the inner radius of the HCal endcap most cells see an energy deposit above 0.3 MIP per readout window
- Shielding inside the HCal endcap can absorb many of the particles and greatly reduce the occupancy, at the price of HCal endcap coverage [2]*

^{*}Studies done with a previous detector model at 3 TeV

- The incoherent pairs showering in the BeamCal create a large neutron flux into the HCal endcap
- At the inner radius of the HCal endcap most cells see an energy deposit above 0.3 MIP per readout window
- ► Shielding inside the HCal endcap can absorb many of the particles and greatly reduce the occupancy, at the price of HCal endcap coverage [2]*
- Reducing the tile size also reduces the occupancy, at the price of higher number of channels [2]*

^{*}Studies done with a previous detector model at 3 TeV

Section 3:

Background Mitigation Methods

Timing Cuts Jet Clustering

Timing Cuts

- Read out full bunch train and identify time of physics event
- Select hits around the event using the time resolution of the sub-detectors
- Reconstruct objects: clusters and tracks
 - Calculate cluster time based on truncated mean time of hits. correct for time of flight
- Accept reconstructed particles depending on particle type, cluster time, and transverse momentum

Default 3 TeV timing cuts

Region	p_{T} range	time cut
	Photons	
central $\cos \theta \leq 0.975$ forward $\cos \theta > 0.975$	$\begin{array}{l} \text{0.75 GeV} \leq \rho_{T} < 4.0 \text{GeV} \\ \text{0 GeV} \leq \rho_{T} < 0.75 \text{GeV} \\ \text{0.75 GeV} \leq \rho_{T} < 4.0 \text{GeV} \\ \text{0 GeV} \leq \rho_{T} < 0.75 \text{GeV} \end{array}$	$\begin{array}{l} t < 2.0 \text{ns} \\ t < 1.0 \text{ns} \\ t < 2.0 \text{ns} \\ t < 1.0 \text{ns} \end{array}$
	neutral hadrons	
central $\cos \theta \leq 0.975$ forward $\cos \theta > 0.975$	$\begin{array}{l} \text{0.75 GeV} \leq \rho_{\text{T}} < 8.0 \text{GeV} \\ \text{0 GeV} \leq \rho_{\text{T}} < 0.75 \text{GeV} \\ \text{0.75 GeV} \leq \rho_{\text{T}} < 8.0 \text{GeV} \\ \text{0 GeV} \leq \rho_{\text{T}} < 0.75 \text{GeV} \end{array}$	$\begin{array}{l} t < 2.5 \text{ns} \\ t < 1.5 \text{ns} \\ t < 2.0 \text{ns} \\ t < 1.0 \text{ns} \end{array}$
	charged particles	
all	$\begin{array}{c} 0.75\mathrm{GeV} \leq p_\mathrm{T} < 4.0\mathrm{GeV} \\ 0\mathrm{GeV} \leq p_\mathrm{T} < 0.75\mathrm{GeV} \end{array}$	$\begin{array}{l} t < 3.0\text{ns} \\ t < 1.5\text{ns} \end{array}$

Timing Cuts II

 $e^-e^+ \to HH$ with $\gamma\gamma \to hadron$ background overlaid before and after tight timing selection cuts

Jet Clustering

- γγ → hadron background and longitudinal boost due to beamstrahlung make LEP jet algorithms unsuited for CLIC
- Use hadron collider jet algorithm features
 - Cluster forward particles into beam jets
 - ► Benefit from longitudinal invariance. Particle distance measure using $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$
- ► Specialised *VLC* jet algorithm [3]
- Reconstruction parameters can and have to be tuned to specific analyses, see the presentation on the physics studies

Jet areas obtained from different types of jet clustering algorithm

Section 4:

Luminosity Measurements

Absolute Luminosity Measurement Luminosity Spectrum Reconstruction

Absolute Luminosity Measurement

- Absolute measurement of luminosity with Bhabha scattering gauge process
- Count number of events in very well defined polar and energy range L = N/σ_{Rhabha}
- LumiCal detector with excellent polar angle and energy resolution [1]
- Systematic effects from Beam-Beam effects under control [4]

Expected stat. uncertainty for 100 fb⁻¹ at 3 TeV as a function of the minimal acceptance angle

Luminosity Spectrum Reconstruction

- ► Reconstruct luminosity spectrum $\mathcal{L}(E_{e^{-}}, E_{e^{+}})$ from large angle $(\theta > 8^{\circ})$ Bhabha events
- ➤ 2D spectrum reconstruction at 3 TeV CLIC has been studied taking all relevant effects into account [5]

Simulated (Guinea-Pig) and reconstructed spectrum (model) after Bhabha scattering and detector resolutions

Section 5:

Summary

Summary

- High energy e⁺e⁻ collisions are challenging, but still a lot cleaner than those of hadron machines
 - Worst case at $\sqrt{s} = 3$ TeV, a lot less background at $\sqrt{s} = 380$ GeV
- Combination of
 - detector time information,
 - granularity,
 - sophisticated reconstruction software: ConformalTracking, particle flow reconstruction,
 - ▶ jet clustering algorithms

meet these challenges

▶ See next presentations for performance validation and physics performance

References

- H Abramowicz et al., "A Luminosity Calorimeter for CLIC", in: (Nov. 2009), URL: https://cds.cern.ch/record/1443828.
- S.B. van Dam and A. Sailer, "The occupancy in the Hadronic Calorimeter endcap of the CLIC detector", in: (2014), CLICdp-Note-2014-004.
- Ignacio Garcia Garcia et al., "Jet reconstruction at high-energy electron-positron colliders", in: Eur. Phys. J. C 78.2 (June 2017), p. 144.
- Strahinja Lukic, "Correction of beam-beam effects in luminosity measurement in the forward region at CLIC", in: (Jan. 2013), URL: https://cds.cern.ch/record/1507547.
- S. Poss and A. Sailer, "Luminosity Spectrum Reconstruction at Linear Colliders", in: *Eur. Phys. J. C* 74 (2014), p. 2833.

Backup Slides

Beam Parameters

Parameter	Unit	380 GeV	3 TeV
θ _c	mrad	16.5	20
f _{rep}	Hz	50	50
n _b		352	312
Δt	ns	0.5	0.5
N		$5.2 \cdot 10^{9}$	$3.72 \cdot 10^{9}$
σ_{χ}	nm	≈ 149	≈ 45
$\hat{\sigma_y}$	nm	≈ 2.9	≈ 1
	μm	70	44
β_x^2	mm	8	7
β_{v}	mm	0.1	0.12
L*	m	6	6
$ \sigma_{z} $ $ \beta_{x} $ $ \beta_{y} $ $ L^{*} $	$1/\text{cm}^2\text{s}^1$	1.5 · 10 34	5.9 · 10 ³⁴
$\mathcal{L}_{0.01}$	1/cm ² s ¹	$0.9\cdot 10^{34}$	$2.0 \cdot 10^{34}$
n,,	,	1.4	2.0
n _γ ΔE/E		0.08	0.25
E _{coh}	TeV	≈ 0	2.1 · 10 ⁸
N _{coh}		≈ 0	6.1 · 10 ⁸
N _{incoh}		4.6 · 10 ⁴	$2.8 \cdot 10^{5}$
	T-1/	2.1 · 10 ²	2.1 · 10
Eincoh	TeV	2.1 · 10	2.1 · 10
$n_{Had} \; (W_{\gamma\gamma} > 2 \; GeV)$		0.17	3.1

Beam Energy Position Correlation

Beam Energyspread

Spectrum Reconstruction in Two Slides

With the distribution $f(O_1, O_2,...)$ of observables measurable in the Detector

$$f(O_1, O_2, \ldots) \approx \sigma(E_1, E_2; O_1, O_2, \ldots) \times \underbrace{\mathcal{L}(E_1, E_2)}_{\mathsf{FSR}(O_1, O_2, \ldots)} \otimes \mathsf{ISR}(E_1, E_2) \otimes \\ \mathsf{FSR}(O_1, O_2, \ldots) \otimes \mathsf{D}(O_1) \mathsf{D}(O_2) \ldots,$$

connected to the luminosity spectrum $\mathcal{L}ig(E_1,E_2ig)$ and measurable in the detector.

One can then:

- Model (i.e., parameterise) the luminosity spectrum
- ▶ Let Bhabha generator take care of cross-section and initial state radiation
- ▶ Do GEANT4 simulation for detector resolutions
- ightharpoonup Use a reweighting technique for *efficient* fitting and extract $\mathcal L$

cic

Reweighting Fit in Words

Reweighting technique uses χ^2 -fit of two histogram with a distribution like

$$f(O_1, O_2, \ldots) \approx \sigma(E_1, E_2; O_1, O_2, \ldots) \times \underbrace{\mathcal{L}(E_1, E_2)}_{\mathsf{FSR}(O_1, O_2, \ldots)} \otimes \mathsf{ISR}(E_1, E_2) \otimes \\ \mathsf{FSR}(O_1, O_2, \ldots) \otimes \mathsf{D}(O_1) \mathsf{D}(O_2) \ldots,$$

- ▶ Data histogram: measured in detector, spectrum simulated by GUINEAPIG, apply Bhabha-scattering and detector simulation
- ► MC histogram: Luminosity spectrum according to the Model, apply Bhabha-scattering and detector simulation
 - Apply Bhabha scattering/ISR/Detector resolutions on event-by-event basis via MC Generator and detector simulation
 - Probability based on luminosity spectrum of each event $\mathcal{L}(x_1^i, x_2^i; [p]_0)$
 - ightharpoonup Vary all event probabilities (via MODEL parameters $[p]_N$) until minimum χ^2 is found

event weight:
$$w^i = \frac{\mathcal{L}\left(\mathbf{x}_1^i, \mathbf{x}_2^i; [p]_N\right)}{\mathcal{L}\left(\mathbf{x}_1^i, \mathbf{x}_2^i; [p]_0\right)}$$

- Advantage
 - Only have to do (very time consuming) Bhabha-scattering and detector simulation once

Background Distribution

