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Luminosity and Beam-Beam Effects

I Large luminosities require high
bunch charge N and small beams
σx/y/z (given the other constraints
from the accelerator) L ∝ N2

σxσy

I Leads to large electromagnetic
fields during bunch crossing
B ∝ γN

σz (σx +σy )
I Use flat beams σy � σx

I The bunch particles are strongly
deflected by the fields and radiate
Beamstrahlung N.b.: Factor 1000 between Y and Z!

Animated bunch crossing
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Beamstrahlung and Luminosity

I Beamstrahlung radiation leads to
collisions far below the nominal
centre-of-mass energy

√
s

I Large fraction at nominal
√

s
I Luminosity spectrum L(E1, E2)
I Collisions between e± γ and γ γ
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Backgrounds I

I Beamstrahlung photons collide
with beam particles or other
photons

I Incoherent e+e− pairs
I qq pairs in γγ → Hadron events

I Incoherent pairs have largest
concentration at small angles

I backgrounds strongly depend on
centre-of-mass energy
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Backgrounds I

I Beamstrahlung photons collide
with beam particles or other
photons

I Incoherent e+e− pairs
I qq pairs in γγ → Hadron events

I Incoherent pairs have largest
concentration at small angles

I backgrounds strongly depend on
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Backgrounds II: Coherent Processes

I Real or virtual photons interact
with the very strong fields to
create e+e− pairs

I Coherent processes only significant
for
√
s > 1 TeV

I Coherent pairs limit the lower
acceptance of the detector to
10 mrad around the outgoing
beam-axis
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CLIC Beam Parameters

I Very large gradient and room
temperature copper cavities
require short RF pulses of less
than 200 ns

I Bunch spacing of ∆t = 0.5 ns with
≈ 300 bunches per train at 50 Hz

I Short bunch spacing requires
crossing angle θc to avoid parasitic
collision

I Crab crossing scheme to avoid loss
of geometrical overlap of colliding
bunches

156 ns 20 ms

0.5 ns

CLIC: trains at 50 Hz, 1 train = 312 bunchesPar. Unit 380 GeV 3 TeV
θc mrad 16.5 20
nb 352 312
N 5.2 · 109 3.72 · 109
σx nm ≈ 149 ≈ 45
σy nm ≈ 2.9 ≈ 1
σz µm 70 44
L 1/cm2s1 1.5 · 1034 5.9 · 1034

L0.01 1/cm2s1 0.9 · 1034 2.0 · 1034
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Section 2:

Detector Requirements due to Beam and Backgrounds
Vertex Detector
Readout and Power Pulsing
Very Forward Region
Calorimeter Endcaps
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Vertex Detector Radius

I Large flux of low momentum particles from incoherent pairs limits the
inner radius of the vertex detector

I Solenoid field reduces radius of particles
I Smaller radius possible at lower centre-of-mass energy

Rate of incoherent pair particles close to the interaction point for 3 TeV
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Full simulations to obtain occupancies of all tracking detectors have been
studied for γγ → hadron events and incoherent pairs, see presentation by E.
Sicking
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Readout and Power Pulsing

I Short luminous time (<200 ns) and long gap between trains (20 ms)
I Record data during collision time, read data out between trains
I Triggerless read out: all data are recorded
I When data is not being read out, switch off the detector: Power Pulsing

More in the presentations on Vertex/tracker technologies (D. Dannheim) and
on DAQ/readout considerations (E. Sicking)
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Very Forward Region

I Crossing angle of 20 mrad between beam axes
I Minimal acceptance of a cone of 10 mrad half-opening due to coherent

pairs at 3 TeV
I Forward e.m. calorimeters: LumiCal and BeamCal, ECal and HCal

endcaps
I The BeamCal is located in the centre of the HCal endcap

0
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2539 3181
Z[mm]

CLICdp Advisory Board, Apr 17, 2018 A. Sailer: Detector Requirements and Experimental Conditions 12 / 23

mailto:andre.philippe.sailer@cern.ch?subject=Detector Requirements and Experimental Conditions at CLIC
https://clic.cern
https://home.cern


BeamCal and LumiCal

I The BeamCal (10–46 mrad) and LumiCal
(39–134 mrad) are the most forward e.m.
calorimeters

I BeamCal receives large energy deposits
from incoherent pairs

I Radiation dose: up to 1 MGy/yr and
1013 neq/yr/cm

2 (at 3 TeV)
I LumiCal just outside the background

envelope, suffers from backscattering
particles

I Precise polar angle and energy
reconstruction for luminosity
measurement

Deposited energy per pad from
40 BX of 3 TeV incoherent pairs

in layer 9
LumiCal
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Calorimeter Endcaps

I The incoherent pairs showering in
the BeamCal create a large
neutron flux into the HCal endcap

I At the inner radius of the HCal
endcap most cells see an energy
deposit above 0.3 MIP per readout
window

I Shielding inside the HCal endcap
can absorb many of the particles
and greatly reduce the occupancy,
at the price of HCal endcap
coverage [2]∗

I Reducing the tile size also reduces
the occupancy, at the price of
higher number of channels [2]∗
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∗Studies done with a previous detector model at 3 TeV
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Section 3:

Background Mitigation Methods
Timing Cuts
Jet Clustering

CLICdp Advisory Board, Apr 17, 2018 A. Sailer: Detector Requirements and Experimental Conditions 15 / 23

mailto:andre.philippe.sailer@cern.ch?subject=Detector Requirements and Experimental Conditions at CLIC
https://clic.cern
https://home.cern


Timing Cuts

I Read out full bunch train and
identify time of physics event

I Select hits around the event using
the time resolution of the
sub-detectors

I Reconstruct objects: clusters and
tracks

I Calculate cluster time based on
truncated mean time of hits,
correct for time of flight

I Accept reconstructed particles
depending on particle type, cluster
time, and transverse momentum

Default 3 TeV timing cuts
Region pT range time cut

Photons

central 0.75GeV≤ pT < 4.0GeV t < 2.0 ns
cos θ ≤ 0.975 0GeV≤ pT <0.75GeV t < 1.0 ns

forward 0.75GeV≤ pT < 4.0GeV t < 2.0 ns
cos θ > 0.975 0GeV≤ pT <0.75GeV t < 1.0 ns

neutral hadrons

central 0.75GeV≤ pT < 8.0GeV t < 2.5 ns
cos θ ≤ 0.975 0GeV≤ pT <0.75GeV t < 1.5 ns

forward 0.75GeV≤ pT < 8.0GeV t < 2.0 ns
cos θ > 0.975 0GeV≤ pT <0.75GeV t < 1.0 ns

charged particles

all 0.75GeV≤ pT < 4.0GeV t < 3.0 ns
0GeV≤ pT <0.75GeV t < 1.5 ns
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Timing Cuts II

e−e+ → HH with γγ → hadron background overlaid before and after tight
timing selection cuts
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Jet Clustering

I γγ → hadron background and
longitudinal boost due to
beamstrahlung make LEP jet
algorithms unsuited for CLIC

I Use hadron collider jet algorithm
features

I Cluster forward particles into
beam jets

I Benefit from longitudinal
invariance. Particle distance
measure using
∆R2 = ∆η2 + ∆φ2

I Specialised VLC jet algorithm [3]
I Reconstruction parameters can

and have to be tuned to specific
analyses, see the presentation on
the physics studies

 144 Page 6 of 16 Eur. Phys. J. C   (2018) 78:144 

Fig. 3 The area or footprint of
jets reconstructed with R = 0.5
with the three major families of
sequential recombination
algorithms. The two shaded
areas in each column correspond
to a jet in the central detector
(θ = π/2) and to a forward jet
(θ = 7π/8). The jet axis is
indicated with a cross
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Fig. 4 Diagram of the parameter space spanned by exponents β and
γ of the VLC algorithm. On the y-axis generalisations with beam jets
of the LEP/SLD algorithms are found, with the Cambridge algorithm
with angular ordering at the origin and the Durham or kt algorithm at
β = 1. Choosing β = -1 yields reverses the clustering order (like in
anti-kt algorithm [38]). Choosing non-zero and positive values for γ

yields robust algorithms with a shrinking jet area in the forward region

slower decrease of the area when the polar angle goes to 0 or
π .

For γ = 0, diB = E2β
i and we retrieve the generalised

e+e− algorithms with constant angular opening: the gener-
alised Cambridge algorithm [17] for β = 0 and generalised kt

or Durham [18] for β = 1. Choosing β = -1 yields an e+e−
variant of the anti-kt algorithm [38]. A schematic overview
of the algorithms in (β, γ ) space is given in Fig. 4.

4 Jet energy corrections

Before we turn to a detailed simulation including overlaid
backgrounds and a model for the detector response, we study
the perturbative and non-perturbative jet energy corrections
of the algorithms. Both types of corrections are closely con-
nected to the jet area [39]. In this section we quantify their
impact, following the analysis of Ref. [39]. This first explo-
ration of the stability of the algorithms should be extended in
future work to quantify the impact of next-to-leading cor-
rection, as performed for instance in Ref. [40]. Also the
robustness of the conclusions for a variety of different sets
of parameters (tunes) of the Monte Carlo simulation merits
further study.

4.1 Monte Carlo setup

The Monte Carlo simulation chain uses the MadGraph5_
aMC@NLO package [23] to generate the matrix elements
of the hard scattering 2 → 2 event. Several processes are
studied, but results in this Section focus on e+e− → qq̄
at

√
s = 250 GeV and e+e− → t t̄ with fully hadronic top

decays at
√
s = 3 TeV. The four-vectors of the outgoing

quarks are fed into Pythia 8.180 [24], with the default tune
to LEP data, that performs the simulation of top-quark and
W boson decays, the parton shower and hadronisation. No
detector simulation is performed and initial-state radiation
and beam energy spread are not included in the simulation.
Particles or partons from the Pythia event record are clustered
using FastJet 3.0.6 [33] exclusive clustering with N = 2.
The default (“E-scheme”) recombination algorithm is used
to merge (pseudo-) jets.

123

Jet areas obtained from different types
of jet clustering algorithm
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Section 4:

Luminosity Measurements
Absolute Luminosity Measurement
Luminosity Spectrum Reconstruction
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Absolute Luminosity Measurement

I Absolute measurement of
luminosity with Bhabha scattering
gauge process

I Count number of events in very
well defined polar and energy
range L = N/σBhabha

I LumiCal detector with excellent
polar angle and energy
resolution [1]

I Systematic effects from
Beam-Beam effects under
control [4]

Expected stat. uncertainty for 100 fb−1
at 3 TeV as a function of the minimal

acceptance angle
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Luminosity Spectrum Reconstruction

I Reconstruct luminosity spectrum
L(Ee− ,Ee+ ) from large angle
(θ > 8◦) Bhabha events

I 2D spectrum reconstruction at
3 TeV CLIC has been studied
taking all relevant effects into
account [5]

noms/s’
0.96 0.98 1 1.02

d
N

/d
x

310

210

110

1

10

210
Model    
GuineaPig

Simulated (Guinea-Pig) and
reconstructed spectrum (model) after

Bhabha scattering and detector
resolutions
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Section 5:

Summary
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Summary

I High energy e+e− collisions are challenging, but still a lot cleaner than
those of hadron machines

I Worst case at
√

s = 3 TeV, a lot less background at
√

s = 380 GeV
I Combination of

I detector time information,
I granularity,
I sophisticated reconstruction software: ConformalTracking, particle flow

reconstruction,
I jet clustering algorithms

meet these challenges
I See next presentations for performance validation and physics performance
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Backup Slides
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Beam Parameters

Parameter Unit 380 GeV 3 TeV

θc mrad 16.5 20
frep Hz 50 50
nb 352 312
∆t ns 0.5 0.5
N 5.2 · 109 3.72 · 109

σx nm ≈ 149 ≈ 45
σy nm ≈ 2.9 ≈ 1
σz µm 70 44
βx mm 8 7
βy mm 0.1 0.12

L∗ m 6 6
L 1/cm2s1 1.5 · 1034 5.9 · 1034

L0.01 1/cm2s1 0.9 · 1034 2.0 · 1034

nγ 1.4 2.0
∆E/E 0.08 0.25

Ecoh TeV ≈ 0 2.1 · 108

Ncoh ≈ 0 6.1 · 108

Nincoh 4.6 · 104 2.8 · 105

Eincoh TeV 2.1 · 102 2.1 · 104

nHad (Wγγ > 2 GeV) 0.17 3.1
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Beam Energy Position Correlation
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Beam Energyspread
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Spectrum Reconstruction in Two Slides

With the distribution f (O1,O2, . . .) of observables measurable in the Detector

f (O1,O2, . . .) ≈ σ(E1,E2;O1,O2, . . .)× L
(
E1,E2

)
⊗ ISR

(
E1,E2

)
⊗

FSR
(
O1,O2, . . .

)
⊗ D

(
O1
)
D
(
O2
)
. . . ,

connected to the luminosity spectrum L
(
E1,E2

)
and measurable in the

detector.
One can then:

I Model (i.e., parameterise) the luminosity spectrum
I Let Bhabha generator take care of cross-section and initial state radiation
I Do Geant4 simulation for detector resolutions
I Use a reweighting technique for efficient fitting and extract L
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Reweighting Fit in Words

Reweighting technique uses χ2-fit of two histogram with a distribution like

f (O1,O2, . . .) ≈ σ(E1,E2;O1,O2, . . .)× L
(
E1,E2

)
⊗ ISR

(
E1,E2

)
⊗

FSR
(
O1,O2, . . .

)
⊗ D

(
O1
)
D
(
O2
)
. . . ,

I Data histogram: measured in detector, spectrum simulated by
GuineaPig, apply Bhabha-scattering and detector simulation

I MC histogram: Luminosity spectrum according to the Model, apply
Bhabha-scattering and detector simulation

I Apply Bhabha scattering/ISR/Detector resolutions on event-by-event basis
via MC Generator and detector simulation

I Remember initial probability based on luminosity spectrum of each event
L
(

x i
1, x

i
2; [p]0

)
I Vary all event probabilities (via Model parameters [p]N) until minimum χ

2

is found

event weight: w i =
L
(

x i
1,x

i
2;[p]N

)
L
(

x i
1,x

i
2;[p]0
)

I Advantage
I Only have to do (very time consuming) Bhabha-scattering and detector

simulation once
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Background Distribution
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