

Direct and indirect BSM searches at CLIC

CLICdp Advisory Board meeting, 17 April 2018

Philipp Roloff (CERN) on behalf of the CLICdp collaboration

Overview

Direct searches:

- Many studies of SUSY particle production performed in 2010-2012 for the CDR
- Selection of channels also driven by the aim to benchmark the detector concepts

Indirect sensitivity of precision measurements:

- Main focus of the full simulation studies in CLICdp since 2013:
 top and Higgs physics (discussion of BSM potential included in this talk)
 → see the previous two presentations
- Other electroweak processes investigated recently: $e^+e^- \to \mu^+\mu^-$, $e^+e^- \to \gamma\gamma$, vector boson scattering and $e^+e^- \to W^+W^-$

Direct searches for new particles

Direct searches

- Direct observation of new particles coupling to γ*/Z/W
 → precision measurement of new particle masses and couplings
- The sensitivity often extends up to the kinematic limit (e.g. $M \le \sqrt{s}$ / 2 for pair production)
- Very rare processes accessible due to low backgrounds (no QCD)
 → CLIC especially suitable for electroweak states
- Polarised electron beam and threshold scans might be useful to constrain the underlying theory

Higgs

 $---\widetilde{\tau}$, $\widetilde{\mu}$, \widetilde{e}

— charginos

— squarks

— S M tt

 $-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-\widetilde{\nu}_{\tau},\widetilde{\nu}_{\mu},\widetilde{\nu}_{e}$

— neutralinos

Direct observation of sparticles

Example: Phenomenological MSSM with 11 parameters

- Global fit to current experimental data (LHC results, low-energy and flavour experiments, CDM measurements)
- In this model, many gaugions and sleptons are accessible at CLIC, stop and sbottom are possible
- → Direct discoveries are (still) a main motivation for high-energy CLIC operation

Investigated SUSY models

CDR Model I, 3 TeV:

- Squarks
- Heavy Higgs

CDR Model II, 3 TeV:

- Smuons, selectrons
- Gauginos

CDR Model III, 1.4 TeV:

- Smuons, selectrons
- Staus
- Gauginos

- Higgs
- $ilde{ au}, ilde{\mu}, ilde{e}$
 - charginos

- $\tilde{\nu}_{ au}, \tilde{\nu}_{\mu}, \tilde{\nu}_{e}$
- neutralinos

- Typical pair production cross sections for EW SUSY particles: 1 10 fb⁻¹
- → thousands to tens of thousands of events
- Wider applicability than only SUSY: Reconstructed particles can be classified simply as states of given mass, spin and quantum numbers

CERN-2012-003 CERN-2012-005

The simplest case: sleptons at 3 TeV

- Slepton production very clean at CLIC
- Slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^{+}e^{-} &\to \tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-} \to \mu^{+}\mu^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{e}_{R}^{+}\tilde{e}_{R}^{-} \to e^{+}e^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{\nu}_{e}\tilde{\nu}_{e} \to e^{+}e^{-}W^{+}W^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \end{split}$$

- Leptons and missing energy
- Masses from endpoints of energy spectra
- Precisions of a few GeV achievable

$$m(\tilde{\mu}_{R}) : \pm 5.6 \,\text{GeV}$$
 $m(\tilde{e}_{R}) : \pm 2.8 \,\text{GeV}$
 $m(\tilde{v}_{e}) : \pm 3.9 \,\text{GeV}$
 $m(\tilde{\chi}_{1}^{0}) : \pm 3.0 \,\text{GeV}$
 $m(\tilde{\chi}_{1}^{\pm}) : \pm 3.7 \,\text{GeV}$

JHEP 09, 001 (2013)

Hadronic final states: gauginos at 3 TeV

Chargino and neutralino pair production:

$$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+W^-$$

$$e^+e^- \rightarrow \tilde{\chi}_2^0 \, \tilde{\chi}_2^0 \rightarrow hh \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$$
 82%

$$e^+e^- \rightarrow \tilde{\chi}_2^0 \, \tilde{\chi}_2^0 \rightarrow Zh \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$$
 17%

Reconstruct W[±]/Z/h in hadronic decays

→ four jets and missing energy

$$M(\tilde{\chi}_1^0) = 340.3 \text{ GeV}$$

$$M(\tilde{\chi}_2^0) = 643.1 \text{ GeV}$$

$$M(\tilde{\chi}_1^+) = 643.2 \text{ GeV}$$

Achieved precisions on these masses: 1-1.5%

LCD-Note-2011-037

Heavy Higgs bosons at 3 TeV

Heavy Higgs bosons:

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (H, A and H[±] almost degenerate in mass) Complex final states

Accuracy of the heavy Higgs mass measurements: ≈0.3%

CERN-2012-003

Summary of CDR SUSY studies

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$ ilde{\ell}$ mass $ ilde{\chi}^0_1$ mass	1010.8 340.3	0.6% 1.9%
3.0	Sleptons	$\widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	II	$ ilde{\ell}$ mass $\widetilde{\chi}_1^0$ mass	1010.8 340.3	0.3% 1.0%
		$\widetilde{\nu}_e\widetilde{\nu}_e \rightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0 e^+ e^- W^+ W^-$		$ ilde{\ell}$ mass $\widetilde{\chi}_1^\pm$ mass	1097.2 643.2	0.4% 0.6%
3.0	Chargino Neutralino	$\begin{array}{l} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \to h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	II	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^{0}$ mass	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R\widetilde{q}_R \rightarrow q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	I	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$H^0A^0 \rightarrow b\overline{b}b\overline{b}$ $H^+H^- \rightarrow t\overline{b}b\overline{t}$	I	${ m H^0/A^0}$ mass ${ m H^\pm}$ mass	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- o \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\widetilde{\chi}_1^0$ mass $\widetilde{\ell}$ mass	560.8 357.8 558.1	0.1% 0.1% 0.1%
		$\widetilde{e}_R^+ \widetilde{e}_R^- o e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\chi}_1^0$ mass	358.1 357.1	0.1%
		$\widetilde{\nu}_e\widetilde{\nu}_e\rightarrow\widetilde{\chi}_1^0\widetilde{\chi}_1^0e^+e^-W^+W^-$		$\widetilde{\ell}$ mass $\widetilde{\chi}_1^\pm$ mass	644.3 487.6	2.5% 2.7%
1.4	Stau	$\widetilde{\mathfrak{r}}_1^+ \widetilde{\mathfrak{r}}_1^- o \mathfrak{r}^+ \mathfrak{r}^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino Neutralino	$\begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \to h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	III	$\widetilde{\chi}_1^\pm$ mass $\widetilde{\chi}_2^0$ mass	487 487	0.2% 0.1%

In general, O(1)% precision on masses (and pair production cross sections) found

CERN-2012-003 CERN-2012-005

What about displaced signatures?

Tracking efficiencies for displaced central tracks

- The efficiencies decrease towards larger R as 5 hits are required
- Longer lifetimes accessible in the forward region

→ see the detector overview talk

Example application: hidden valley searches using Higgs decays

$$e^+e^- o Hv_e^- \overline{v}_e^-; H o \pi_v^- \pi_v^- o b \overline{b} b \overline{b}$$

Many other interesting possibilities to be explored...

BSM potential of Higgs production & e⁺e⁻ → W⁺W⁻

Standard Model processes at CLIC

 $e^+e^- \rightarrow 2$ particles: σ decreases with \sqrt{s}

Vector boson fusion & scattering:

 σ increases with \sqrt{s}

Effective Field Theory

- Model-independent framework for probing indirect signs of new physics
 → very useful for comparison of future collider options / parameters
- Input to fits: Higgs production in Higgsstrahlung and WW fusion,
 e⁺e⁻ → t̄H, weak boson pair production: e⁺e⁻ → W⁺W⁻
- → see the previous talk for a similar interpretation of top pair production

CLIC sensitivities to dimension-6 operators

Individual energy stages

- EFT analysis of Higgs and W⁺W⁻ production
- Lighter (darker) green bars include (omit) Higgsstrahlung at high energy
- Precision enhanced by higher centre-of-mass energy
- Sensitivity to new physics scales $\Lambda = O(10)$ TeV for individual operators, reduces to O(1) TeV for global fit

JHEP 05, 096 (2017)

Full CLIC programme

Combination of successive energy stages

→ The global fit benefits from the inclusion of earlier energy stages

EFT analysis of Higgs and W⁺W[−] production

JHEP 05, 096 (2017)

16

Comparison of different collider options

precision reach of the 12-parameter fit in Higgs basis

- Many EFT parameters can be measured significantly better at CLIC compared to the HL-LHC
- H→cc is difficult at hadron colliders

JHEP 09, 014 (2017)

NB: The luminosity projections assume different levels of optimism for the compared future collider options

Other precision EW measurements at high energy

Precision study of e⁺e[−] → µ⁺µ[−]

Minimal anomaly-free Z' model:

Charge of the SM fermions under U(1)' symmetry:

$$Q_f = g_Y'(Y_f) + g'_{BL}(B-L)_f$$

Observables:

- total e⁺e⁻ → μ⁺μ⁻ cross section
- forward-backward-asymmetry
- left-right asymmetry (±80% e⁻ polarisation)

If LHC discovers Z' (e.g. for M = 5 TeV):

Precise measurement of the effective couplings

Otherwise:

Discovery reach up to tens of TeV (depending on the couplings)

arXiv:1208.1148

Precision study of e⁺e[−] → γγ

20

New physics searches with $e^+e^- \rightarrow \gamma\gamma$: deviation from QED expectation

CLIC: $\sqrt{s} = 3$ TeV, L = 2 ab⁻¹, $\Delta L/L = 0.5\%$

Example: QED cutoff parameter ∧

$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda_{\pm}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Born}} \pm \frac{\alpha^2 s}{2\Lambda_{\pm}^4} (1 + \cos^2 \theta)$$

Scenario:	CLIC reach (95% CL):	LEP limit (95% CL):
QED cutoff parameter Λ (electron size)	6.33 TeV (3.1 · 10 ⁻¹⁸ cm)	≈390 GeV
Contact interactions: Λ'	20.1 TeV	≈830 GeV
Extra dimensions: $M_s/\Lambda^{1/4}$	15.9 TeV	≈1 TeV
Excited electron: M(e*)	4.87 TeV	≈250 GeV

Unique to lepton colliders, CLIC at 3 TeV factor 15 - 25 better than the LEP limits

Vector boson scattering (1)

- Vector boson scattering (VBS) gives insight into the mechanism of electroweak symmetry breaking
- Example processes investigated for high-energy CLIC operation:

$$e^+e^- \rightarrow W^+W^-v\overline{v}$$

 $e^+e^- \rightarrow ZZv\overline{v}$

- Search for additional resonances or anomalous couplings
- At CLIC fully hadronic events can be used (in contrast to hadron colliders):
 W⁺W⁻vv/ZZvv → qqqqvv

e⁺e⁻ → qqqqvv at 1.4 TeV

Vector boson scattering (2)

• Extract the operator coefficients α_4 and α_5 from invariant mass of the final-state bosons

- The sensitivities to α_4 and α_5 improve by about one order of magnitude from 1.5 to 3 TeV
- Precision expected for CLIC at 3 TeV similar to HL-LHC

Steven Green, CERN-THESIS-2017-237

Outlook and conclusions

Important future work

24

Example studies where full detector simulations are important for realistic estimates of the CLIC physics potential

Direct searches:

- <u>SUSY with compressed spectra:</u> missing energy + soft particles / leptons in the presence of beam-induced backgrounds
- Very long-lived signatures: e.g. using the imaging calorimeters
- → reconstruction challenge
- Mono-photon + missing energy events (ongoing work)

Precision EW measurements:

- m_w with precision of a few MeV? → systematic uncertainties
- More on multi-boson production, e.g. differential distributions for e⁺e⁻ → W⁺W⁻ (ongoing work), e⁺e⁻ → W⁺W⁻Z, ... → challenge for PFA
- 2-fermion production other than e⁺e⁻ → μ⁺μ⁻/tt

NB: QCD measurements (e.g. α_s) also not yet investigated

Summary and conclusions

- A high-energy e⁺e⁻ collider has excellent discovery potential for new physics through:
 - direct detection of new particles up to the kinematic limit
 - precision EW measurements, which can provide indirect sensitivity to scales of up to tens of TeV
- In many cases the sensitivity rises steeply with the centre-of-mass energy
- The flexibility of an e⁺e⁻ linear collider (extendable energy, threshold scans, beam polarisation) might be crucial to understand possible hints for new physics seen at the HL-LHC and elsewhere

Backup slides