

Vertex and Tracker Technologies

CLICdp Advisory Board

Dominik Dannheim (CERN) on behalf of the CLICdp collaboration

Outline

- Vertex- and tracking-detector requirements
- Sensor and readout technologies
- Simulations and DAQ
- Detector integration studies
- Conclusions

CLIC vertex- and tracking detector requirements

Vertex detector:

- efficient tagging of heavy quarks through precise determination of displaced vertices:
 - \rightarrow good single point resolution: σ_{SP} ~3 μm
 - → small pixels <~25x25 µm², analog readout
 - → low material budget: $\leq 0.2\% \text{ X}_0 / \text{layer}$
 - → low-power ASICs + air cooling (~50 mW/cm²)

Tracker:

- Good momentum resolution: σ(p_T) / p_T² ~ 2 x 10⁻⁵ GeV⁻¹
 - \rightarrow 7 µm single-point resolution (~30-50 µm pitch in R ϕ)
 - → many layers, large outer radius (~140 m² surface)
 - → ~1-2% X0 per layer
 - → low-mass supports + services

Both:

- 20 ms gaps between bunch trains
 - → trigger-less readout, pulsed powering
- few % maximum occupancy from beam backgrounds
 - → sets inner radius and limits cell sizes
 - → time stamping with ~5 ns accuracy
 - → depleted sensors (high resistivity / high voltage)
- moderate radiation exposure (~10⁴ below LHC!):
 - NIEL: $< 10^{11} \, n_{eq}/cm^2/y$
 - TID: < 1 kGy / year

Vertex-detector simulation geometry

Tracker simulation geometry

4.6 m

CLIC pixel-detector technology R&D

Sensor + readout technologies

Sensor + readout technology	Currently considered for
Bump-bonded Hybrid planar sensors	Vertex
Capacitively coupled HV-CMOS sensors	Vertex
Monolithic HV-CMOS sensors	Tracker
Monolithic HR-CMOS sensor	Tracker
Monolithic SOI sensors	Vertex, Tracker

Detector integration studies

- Challenging requirements lead to extensive detector R&D program
- ~10 institutes active in vertex/tracker R&D
- Collaboration with ATLAS, ALICE, LHCb, RD53, AIDA-2020

Hybrid planar sensor technology

- Planar pixel sensors bump-bonded to r/o ASICs
- Considered for vertex detector

Status:

 Comprehensive thin-sensor studies with slim-edge and active-edge sensors (50-300 μm thickness) on Timepix/Timepix3 readout ASICs (55 μm pitch)

Hybrid pixel detector

Timepix with 50 µm active-edge sensor

- Achievable resolution limited by fraction of 2-hit clusters
 - → Not enough charge sharing in ultra-thin sensors

CLICdp-Note-2016-001

Hybrid planar sensor technology

- Planar pixel sensors bump-bonded to r/o ASICs
- Considered for vertex detector

Status:

- Comprehensive thin-sensor studies with slim-edge and active-edge sensors (50-300 µm thickness) on Timepix/Timepix3 readout ASICs
- CLICpix/CLICpix2 prototype r/o ASICs with in-pixel time and energy measurement, 25x25 µm² pitch, implemented in 65 nm TSMC process, including full 12" wafer from RD53 prototype run
- Single-chip bump-bonding with 25 µm pitch
- ~100% efficiency, few ns timing, σ_{SP}~7 μm

Hybrid pixel detector

CLICpix with 50 µm planar sensor

CLICdp-Conf-2017-010

Hybrid planar sensor technology

- Planar pixel sensors bump-bonded to r/o ASICs
- Considered for vertex detector

Status:

- Comprehensive thin-sensor studies with slim-edge and active-edge sensors (50-300 µm thickness) on Timepix/Timepix3 readout ASICs
- CLICpix/CLICpix2 prototype r/o ASICs with in-pixel time and energy measurement, 25x25 µm² pitch, implemented in 65 nm TSMC process, including full 12" wafer from RD53 prototype run
- Single-chip bump-bonding with 25 µm pitch
- ~100% efficiency, few ns timing, σ_{SP}~7 μm

Ongoing work:

- Validation of new single-chip bump-bonding process
- Beam tests for CLICpix2 planar-sensor assemblies
- Reduce σ_{SP} : ELAD sensors with enhanced charge sharing

Hybrid pixel detector

CLICpix with 50 µm planar sensor

Future developments:

- Even smaller pixels (28 nm process technology), lower detection threshold
- New hybridisation methods: Cu pillars, Indium, Anisotropic Conductive Film, ...
- Module/stave building studies

CLICdp-Conf-2017-010

Capacitively coupled HV-CMOS sensors

- Active High-Voltage (HV) CMOS sensors, large fill factor: electronics inside charge-collection well, depletion through HV
- Capacitive coupling to r/o ASICs
 → thin glue layer replaces costly small-pitch bump bonds
- Considered for vertex detector

Results:

- Two generations of active sensors (CCPDv3, C3PD) in AMS 180 nm HV-CMOS process,
 10-1000 Ohm cm substrates, 25x25 µm² pitch
- Glue assemblies with CLICpix/CLICpix2:
 ~90-100% efficiency, few ns timing, σ_{SP}~6 μm
- Finite-element simulation of capacitive coupling

Capacitively Coupled Pixel Detector

C3PD/CLICpix2 glue assembly

NIM A 823 (2016) 1-8; JINST 12 P09012 (2017)

Capacitively coupled HV-CMOS sensors

- Active High-Voltage (HV) CMOS sensors, large fill factor: electronics inside charge-collection well, depletion through HV
- Capacitive coupling to r/o ASICs
 - → thin glue layer replaces costly small-pitch bump bonds
- Considered for vertex detector

Results:

- Two generations of active sensors (CCPDv3, C3PD) in AMS 180 nm HV-CMOS process,
 10-1000 Ohm cm substrates, 25x25 µm² pitch
- Glue assemblies with CLICpix/CLICpix2:
 ~90-100% efficiency, few ns timing, σ_{SP}~6 μm
- Finite-element simulation of capacitive coupling

Ongoing work:

- Evaluation of sensors with high-resistivity substrates
- Optimization of gluing process (uniformity, reproducibility)
- Simulation of the entire transfer chain

Future developments:

- Module concept? (difficult!)
- A/C coupling at the fab (wafer) level + TSV
- A/C coupled passive CMOS sensors?

Capacitively Coupled Pixel Detector

C3PD/CLICpix2 glue assembly

NIM A 823 (2016) 1-8; JINST 12 P09012 (2017)

Monolithic HV-CMOS sensors

- Active HV-CMOS sensors with fully integrated readout
- Considered for tracker

AMS 180 HV-CMOS ISOPMOS HV VDD GND VDD GND GND VDD HV I PMOS I

Results:

- ATLASPIX prototypes in AMS 180 nm HV-CMOS process:
 40 x 120 μm² pitch, data-driven column-drain readout
- 99.5% efficiency, σ_t~16-20 ns, σ_{SP}~13 μm
 (almost no charge sharing; timing limited by r/o system)
- Similar developments with LFoundry HV-CMOS process

Monolithic HV-CMOS sensors

- Active HV-CMOS sensors with fully integrated readout
- Considered for tracker

AMS 180 HV-CMOS ISOPMOS HV VDD GND VDD GND GND GND VDD VDD HV VDD HVD SPTUB DPTUB DPTUB P Substrate

Results:

- ATLASPIX prototypes in AMS 180 nm HV-CMOS process:
 40 x 120 µm² pitch, data-driven column-drain readout
- 99.5% efficiency, σ_t~16-20 ns, σ_{SP}~13 μm
 (almost no charge sharing; timing limited by r/o system)
- Similar developments with LFoundry HV-CMOS process

Ongoing work:

 Beam tests of ATLASPIX with improved readout system (timing, lower threshold, power consumption tests)

Future developments:

- Adapt pixel layout to CLIC requirements (~30 µm pixel width)
- Improve digital design: power pulsing
- Reduce periphery area?

Integrated HR-CMOS sensors

- Integrated CMOS sensors on High-Resistivity (HR) substrate
- Small fill factor: electronics outside charge-collection well
- Considered for tracker

Results:

- Tests with INVESTIGATOR analog prototype chip in TowerJazz 180 nm HR-CMOS process (ALICE development), 20x20 - 50x50 µm² pitch
- For 28x28 μm² pitch, external readout:
 99.3% efficiency, σ_t<5 ns, σ_{SP}~4 μm

HR-CMOS process

INVESTIGATOR HR-CMOS test chip

CLICdp-Note-2017-004

Integrated HR-CMOS sensors

- Integrated CMOS sensors on High-Resistivity (HR) substrate
- Small fill factor: electronics outside charge-collection well
- Considered for tracker

Results:

- Tests with INVESTIGATOR analog prototype chip in TowerJazz 180 nm HR-CMOS process (ALICE development), 20x20 - 50x50 µm² pitch
- For 28x28 μm² pitch, external readout:
 99.3% efficiency, σ_t<5 ns, σ_{SP}~4 μm

Ongoing work:

Design of fully integrated CLICTD chip:
 30 x 300 µm² pitch, segmented electrodes, in-pixel time + charge measurement

Future plans:

- Thinning to 100 µm
- Larger prototypes
- Further process optimization / smaller feature size?

 could also become an option for the vertex detector

HR-CMOS process

INVESTIGATOR HR-CMOS test chip

CLICdp-Note-2017-004

Monolithic SOI sensors

- Silicon-On-Insulator (SOI): Sensor and electronics integrated on single wafer with high-resistivity substrate, separated by insulation oxide layer + buried p-wells,
- · Considered for vertex and tracker

Results:

- Cracow SOI test chip in 200 nm LAPIS SOI process, with various geometries and technology parameters:
 >=30x30 µm² pitch, single SOI and double SOI, different r/o schemes
- Test results for 500 μ m thickness, 30x30 μ m² pitch, rolling-shutter r/o: >99% efficiency, $\sigma_{SP}\sim4.5~\mu$ m

Cracow SOI test chip

CLICdp-Pub-2018-001

Monolithic SOI sensors

- Silicon-On-Insulator (SOI): Sensor and electronics integrated on single wafer with high-resistivity substrate, separated by insulation oxide layer + buried p-wells,
- Considered for vertex and tracker

Results:

- Cracow SOI test chip in 200 nm LAPIS SOI process, with various geometries and technology parameters:
 >=30x30 µm² pitch, single SOI and double SOI, different r/o schemes
- Test results for 500 μ m thickness, 30x30 μ m² pitch, rolling-shutter r/o: >99% efficiency, $\sigma_{SP}\sim4.5~\mu$ m

Ongoing work:

- Production of CLIPS vertex test chip, targeted to LC vertex requirements: 20x20 µm² pitch, snapshot r/o of analog time and charge measurement, ≥ 100 µm thickness
- Analysis of first-generation prototype test-beam data
- Development of readout system for CLIPS

Future plans:

Larger chips, improved readout

Cracow SOI test chip

CLICdp-Pub-2018-001

Sensor and readout simulation

Geant 4

SYNOPSYS*

- Simulations are crucial for understanding performance of prototypes and developing new sensors and readout ASICs
- Complex simulation chain: ionization process, charge transfer, capacitive coupling, r/o ASIC response, beam-telescope setup
- Various tools available: Geant4, TCAD process and device simulation, COMSOL multi-physics, parametric models, SPICE circuit simulation

Results:

- 2D TCAD simulations of planar and HV/HR-CMOS sensors
- **COMSOL** results for capacitive coupling
- Parametric simulations and circuit simulations for r/o ASIC optimization
- Geant-4 simulations combined with parametric models
 - → Allpix² simulation framework, validated for planar sensors

Ongoing work:

- Validation of Allpix² simulations for SOI, HV/HR-CMOS
- 3D TCAD simulations for HV/HR-CMOS sensors

Future plans:

- Include Timing in Allpix² simulations
- Allpix² simulations of new prototypes

COMSOL cādence MIP in underdepleted HV-CMOS pixel sensor

CLICdp-Note-2017-006

Sensor and readout simulation

- Simulations are crucial for understanding performance of prototypes and developing new sensors and readout ASICs
- Complex simulation chain: ionization process, charge transfer, capacitive coupling, r/o ASIC response, beam-telescope setup
- Various tools available: Geant4, TCAD process and device simulation, COMSOL multi-physics, parametric models, SPICE circuit simulation

Results:

- 2D TCAD simulations of planar and HV/HR-CMOS sensors
- **COMSOL** results for capacitive coupling
- Parametric simulations and circuit simulations for r/o ASIC optimization
- Geant-4 simulations combined with parametric models
 - → Allpix² simulation framework, validated for planar sensors

Ongoing work:

- Validation of Allpix² simulations for SOI, HV/HR-CMOS
- 3D TCAD simulations for HV/HR-CMOS sensors

Future plans:

- Include Timing in Allpix² simulations
- Allpix² simulations of new prototypes

MIP in underdepleted HV-CMOS pixel sensor

DAO

 Lab and beam tests require flexible scalable DAQ hardware and software

Results:

- High-rate beam telescope with Timepix3 detector planes
 (~1 MHz track rate, ≤2 µm resolution, ~1 ns time resolution)
- CaRIBOu universal readout system developed with ATLAS:
 - System-on-Chip (SoC) architecture
 - Peary DAQ software in Linux system inside FPGA core
 - Integration of CLICpix2, C3PD, ATLASPIX

Ongoing work:

- New Carboard hardware release with enhanced features
- CLICTD and CLIPS integration
- Preparing for beam tests outside CERN during LS II in 2019/20

Future plans:

- Integrate FCAL readout electronics
- Scale to larger systems:
 - → Timepix4 beam telescope with CaRIBOu?
 - → Prototype of functional ladder?

CLICdp-Conf-2017-012

CaRIBOu with CLICpix2 r/o ASIC

Powering

- Powering concept has major impact on material budget and heat load
- Small duty cycle of CLIC machine (<10⁻⁵) allows for power pulsing, reducing average power consumption

Results:

- Prototypes for low-mass power pulsing and power delivery concept for vertex detector
- Local energy storage and voltage regulation
- Small continuous current through low-mass Al cables, stable voltages for r/o ASICs
- ~0.1%X0 material in detector area, expected to decrease to 0.04%X0 in future
- Through-Silicon-Via (TSV) interconnect process (developed for Timepix3 ASICs)

Future plans:

- Adapt concept to requirements of new chips for vertex and tracker?
- Prototype ladder with real ASICs?
- Prototypes of low-mass flex cables?
- Investigate serial powering?

→ More details on power pulsing in talk on DAQ / readout by Eva Sicking in this session

Power-pulsing prototype

CLICdp-Note-2015-004

Cooling

Vertex detector and tracker require cooling systems with sufficient cooling power and minimal impact on physics performance (material budget, vibrations, constraints for detector layout)

Results:

- Simulations and prototype measurements for vertex air cooling concept with spiral-shaped disc layers
 - \rightarrow ~50 mW/cm² feasible
- Water cooling concept for tracker (copied from ALICE ITS upgrade, no dedicated CLIC studies)
 - \rightarrow ~150 mW/cm² feasible

Ongoing work:

Micro-channel cooling studies (for DEPFET)

Future plans:

- Optimization study for vertex/tracker operation temperature?
- Develop liquid (micro-channel, CO2?) cooling concept as backup solution for vertex?
- Refine tracker cooling concept?

1:1 scale air cooling thermal test setup

Mass Flow: 20.1 g/s Average velocity: @ inlet: 11.0 m/s @ z=0: 5.2 m/s @ outlet: 6.3 m/s

Finite-element simulation of air velocity

CLICdp-Note-2016-002

Mechanical integration

Material budget allows for only ~0.1%X0 from cables+supports in vertex region, <1%X0 in tracker

- → Development of low-mass supports with sufficient rigidity required
- → Low-mass services, optimized routing concepts

Results:

- Low-mass CFRP stave prototypes for vertex detector, FE simulations
- Concept for supports, beam pipe and cabling in vertex region, FE simulations
- Low-mass tracker support-structure concept, validated in FE simulations
- Prototype for outer tracker support segment

Future plans:

- Investigate new technologies: truss-like carbon structures (→ ALICE ITS upgrade)
- Build more refined prototypes (including cables, ...)?
- Concept for services routing through outer detector elements?
 N.B.: details depend strongly on r/o technology choices

CFRP support prototypes

Prototype of outer barrel tracker support structure

Conclusions

- Stringent requirements for CLIC vertex and tracking detectors have inspired broad and integrated technology R&D program
- Various sensor + readout technologies under study
- Resolution target for vertex layers remains challenging
- Monolithic pixel detectors under development for large-area tracker
- Detector integration studies demonstrate feasibility of proposed detector concepts

Thanks to everyone who provided material for this talk!

Additional Material

Detector R&D document

- Document in preparation: Detector Technologies for CLIC
 - → Input to European Strategy Update process in 2019
- Description of R&D status for vertex/tracker, calorimetry, readout electronics, tools
- Defined scope, team of editors
- Targeting CERN yellow report, 80-90 pages, ~50% vertex/tracker
- Aim for first draft by summer 2018

1.	Introduction	4.	4.1. Electromagnetic calorimeter
2.	CLIC detector overview and experimental conditions (5 p.) 2.1. Detector layout		4.2. Hadronic calorimeter4.3. Summary and outlook
3.	Vertex and tracking detector (40 p.) A. Nürnberg,	5.	Very forward calorimeters (10 p.) A. Levy 5.1. Luminosity calorimeter (LumiCal)
	 3.1. Requirements D. Dannheim 3.2. Detector concept 3.3. Hybrid passive sensors and r/o ASICs		5.2. Beam calorimeter (BeamCal)
	3.3.1. Readout ASICs and backend processing (TSV) 3.3.2. Active-edge sensor technology 3.3.3. Sensors with enhanced lateral drift (ELAD) 3.3.4. Fine-pitch bump bonding 3.4. CMOS sensors 3.4.1. Capacitively coupled active High-Voltage CMOS sensors 3.4.2. Monolithic High-Voltage CMOS sensors 3.4.3. Monolithic High-Resistivity CMOS sensors		Readout electronics and data acquisition system (10 p.) 6.1. Detector readout requirements
	3.4.4. Monolithic SOI sensors	7.	Conclusions and future developments
	3.5. Cooling	A.	Caribou scalable readout system
	3.6. Mechanical integration		HOSE BY SETS OF SELECTION OF THE RESERVE STATE OF THE SETS OF THE
	3.7. Summary and outlook	В.	Beam telescope infrastructure
		C.	Simulation tools

Thin-sensors with Timepix(3) r/o

Planar sensor assemblies with 55 µm pitch

- Goal: test feasibility of ultra-thin sensors with minimized inactive regions
- Producers: Micron and Advacam/VTT
- Readout: Timepix / Timepix3
- 50-500 μm sensor,100-700 μm ASIC thickness
- slim-edge and active-edge layouts
- Test-beam campaigns at DESY and CERN PS/SPS
- ultimate goal: 50 μm sensors on 50 μm ASICs

50 µm silicon wafer

Efficiency of thin-sensor assemblies

- Test-beam measurements of Timepix/Timepix3 assemblies with different sensor thicknesses:
 - Sufficient energy deposition for MIPs, even for 50 µm sensors
 - Good agreement with Geant4 simulations
 - High detection efficiency (>99%) under normal operating conditions

Resolution of thin-sensor assemblies

 Smaller pixel pitch required (see following slides)

CLICdp-Note-2016-001

CLICpix planar-sensor assemblies

- 65 nm demonstrator CLICpix r/o ASIC:
 - 64 x 64 pixel matrix
 - 25 µm pixel pitch
 - simultaneous 4-bit time (TOA) and energy (TOT) measurement per pixel
- Single-chip indium bump-bonding with 25 μm pitch at SLAC (C. Kenney, A. Tomada)
- Functional assemblies produced with 50-200 μm thick planar sensors (Micron, Advacam active edge)
- <4 µm single-point resolution for 200 µm thickness
- For 50 μm thickness not enough charge sharing, limits resolution to >~7 μm (~1300 e- threshold)

CLICpix with 50 µm planar sensor

CLICpix2 r/o ASIC

- New CLICpix2 in same 65 nm process as CLICpix:
 - Increased matrix size to 128 × 128 pixels
 - Longer counters for charge (5-bit) and timing (8-bit) measurements
 - Improved noise isolation and removal of cross-talk issue observed in first CLICpix
 - More sophisticated I/O with parallel column readout and 8/10 bit encoding
 - Integrated test pulse DACs and band gap
- Test results with chips from Multi-Project-Wafer-Run
- Same chip on RD53 wafer, received in Dec 2017
 (change from 5+1 to 7+1 metal layers)
 → access to full wafers for bump-bonding process development

CLICpix2

CLICpix2 analog F/E specifications

Parameter	Value	
Power dissipation	≤ 12 µW	
Area	≤ 12.5x25 µm²	
Input charge, Q _{in}	nominal 4 ke-, max. 40 ke-	
Minimum threshold, Q _{th,min}	≤ 600 e-	
Equivalent input-referred noise, Q _{n,in}	≤ 70 e-	
ToT dynamic range	≥ 40 ke-	
ToA accuracy	≤ 10 ns	
Total ionizing dose (for 10 yr)	1 Mrad	
Input charge types	e-, h+	
Testability	in-pixel test pulse (i.e. Q _{test}) injection	

C3PD HV-CMOS sensors

- C3PD: active HV-CMOS sensor for capacitive coupling
- Commercial 180 nm High-Voltage CMOS process: transistors in deep n-well, acting as collecting electrode
- Footprint matching CLICpix2: 128 x 128 pixels, 25x25 μm²
- Charge Sensitive Amplifier (CSA) + unity gain buffer
- Production wafers of various resistivities:
 20, 80, 200, 1000 Ohm cm
- Test-beam results for standard bulk resistivity:
 ~20 Ohm cm, ~15 μm depletion at 60 V
- First lab tests for assemblies with 80 Ohm cm confirm larger drift signal, increased active depth ~25 μm

Schematic cross section of C3PD

Sr-90 source exposure

C3PD chip thinned to 50 µm

C3PD+CLICpix2 in test beam

C3PD+CLICpix2 assembly in Timepix3 telescope

- Test-beam measurements in CLICdp Timepix3 telescope for 5 assemblies with 20 Ohm cm substrate:
 - C3PD bias scans
 - CLICpix2 threshold scans
 - Angles between 0° (perpendicular) and 30°
- Analysis in progress
- Preliminary results show difference in cluster signals and sizes (varying glue-assembly quality)
- Similar residuals of 8.5-9 μm (threshold <~1000 e⁻), as expected from low cluster multiplicities
- Expect improved performance for high-res. substrates

7 Timepix3 Cr telescope planes

Cracow SOI DUT

C3PD+CLICpix2 assembly

Caribou r/o

C3PD+CLICpix2 time resolution

- Track time resolution of CLICdp Timepix3 telescope <~1 ns
 → precise characterization of DUT timing capabilities
- CLICpix2: 100 MHz ToA clock → 10 ns time binning
- Gauss fit of time residuals shows width of ~9 ns
- Tail towards later times, as expected from time walk
- → Time residual reduced to ~7 ns after time-walk correction

Planar sensors on CLICpix2

- Test results with planar sensors (25x25 µm² pitch) needed for full assessment of CLICpix2 performance
- Planar active-edge CLICpix2 sensors with UBM available:
 - Advacam MPW production with ATLAS (50-150 µm thick)
 - FBK AIDA-2020 production (130 µm thick)
- Single-chip bump-bonding on carrier wafers in progress at IZM + thinning of ASICs
- Future plan: develop wafer-level bump deposition process for CLICpix2 wafer from RD53 submission

ELAD sensors

- Position resolution in very thin sensors so far limited to ~pixel pitch / $\sqrt{12}$ (almost no charge sharing)
- New sensor concept for enhanced charge sharing Enhanced LAteral Drift sensors (ELAD), H. Jansen (DESY/PIER)
- Deep implantations to alter the electric field
 - → lateral spread of charges during drift, cluster size ~2
 - → improved resolution for same pitch

Patent DE102015116270A1

- Challenges:
 - Complex production process, adds cost
 - Have to avoid low-field regions (recombination)
- Ongoing TCAD simulations:
 - Implantation process
 - Sensor performance for MIPs
- First production in 2018: generic test structures, strips and test sensors with Timepix footprint (55 µm pitch)

Monolithic SOI sensors

- Sensor and electronics integrated on single wafer with high-resistivity substrate, separated by insulation oxide layer + buried p-wells,
- Considered for vertex and tracker
- Cracow SOI test chip in 200 nm LAPIS SOI process, with various geometries and technology parameters: >=30x30 µm² pitch, single SOI and double SOI, different r/o schemes
- Test results for 500 μ m thickness, 30x30 μ m² pitch, rolling-shutter r/o: >99% efficiency, σ_{SP} <~2 μ m

Cracow SOI test chip

CLIPS SOI sensor

- CLIPS: New AGH SOI chip design targeted to Linear Collider VTX detectors:
 - 64x64 matrix with 20x20 µm² pixels
 - Targets spatial resolution <3 µm, time resolution <10 ns
 - Analog charge and time information in storage capacitors in each pixel
 → no need for fast clock distribution into matrix
 - Snapshot analog readout between bunch trains with external ADC
 - On chip trigger to reduce the data rate
 - Chip submitted November 2017
 - → 300-500 µm thick samples expected in April 2018
 - → 75-100 µm thinned wafers ~June 2018

CLIC PIXEL SOI

CLIPS layout

CLIPS pixel design

Monolithic HV-CMOS: ATLASPIX

180 nm HV-CMOS process:

- Fully integrated chip designed for ATLAS ITk upgrade
- Process modification: isolated PMOS
- 25 x 400 pixels, 130 μm x 40 μm pixel size
- 20-1000 Ω cm substrates
- Charge amplifier, discriminator in pixel
- ToT and ToA in periphery (point-to-point connection)

I. Peric et al.

Tests for 80 Ω cm ATLASPIX_Simple in view of CLIC tracker requirements:

- Laboratory calibration and beam tests in CLICdp Timepix3 telescope at CERN SPS
 - Efficiency 99.6%
 - Limited charge sharing → box-shaped residuals, σ~pitch/√12
 - Time resolution ~30 ns, dominated by 10 MHz r/o clock, to be improved with new Caribou r/o system

Monolithic HR-CMOS: INVESTIGATOR

180 nm HR-CMOS process:

- High-Resistivity epitaxial layer (15-40 μm, 1-8 kΩ cm)
- CMOS circuitry shielded by deep P-well
- Small collection diode → small capacitance:
 - Maximise signal/noise
 - Low analogue power consumption and fast timing
- Frontside biasing:
 - Bias voltage limited by CMOS transistors to -6 V

Modified process:

- Additional low-dose N-implant to achieve full lateral depletion:
 - Improved radiation tolerance
 - Faster charge collection
 - Backside biasing possible (not limited to -6 V)

W. Snoeys et. al: http://dx.doi.org/10.1016/j.nima.2017.07.046)

INVESTIGATOR test chip developed for ALICE (W. Snoeys et al.):

- 134 mini-matrices with 8 x 8 pixels (variation of pixel size, collection electrode size, ...)
- Source follower in each pixel, analog signals routed to periphery
- Readout with external 65 MHz sampling ADC per pixel
- Beam tests in CLICdp Timepix3 telescope,
 using chips with 25 μm epi thickness and 28 μm pitch, both processes

Investigator chip layout

INVESTIGATOR resolution and efficiency

Impact of charge sharing on spatial resolution and efficiency for standard & modified process (pitch of 28 µm, bias voltage of -6 V):

- More charge sharing for standard process
- Expected from non depleted regions (diffusion)

 Better spatial resolution for standard process down to ~ 3.5 µm

 Earlier drop of efficiency (at lower thresholds) for standard process

Efficiency & spatial resolution for both process variants within requirements for CLIC tracker.

INVESTIGATOR timing

Timing resolution for standard & modified process (pitch of 28 µm, bias voltage of - 6 V):

Comparable timing resolution for both processes (Readout sampling frequency of 65 MHz limits achievable precision)

40

CLICTD monolithic HR-CMOS tracker chip

Good performance of studied 180 nm HR-CMOS technology with respect to requirements of CLIC tracker

→ Technology used for ongoing design of a fully integrated chip for the CLIC tracker

CLIC Tracker Detector (CLICTD) – monolithic HR-CMOS sensor with 30 µm x 300 µm pixels

Segmented macro-pixel structures to maintain advantages of small collection diode (prompt and fully efficient charge collection) while reducing digital logic:

Data In

Enable Digital

Test Pulse ToA clk ThAdj[0] Discriminator output of 8 collection diodes ToA ToA **ASM** N front-ends - - - counter combined in logical OR + Sync **Digital Tes** Pulse Hit bit [0] ToT ToT Shutter **ASM** counter + Sync Hit bit [N] Output of logical OR passed to digital circuitry: Hit ToT clk Flag

- Simultaneous 8-bit ToA and 5-bit ToT measurements
- Expect $\sigma_{SP} \sim 7 \mu m$ in short direction (charge sharing)
- Hit bit pattern → maintain good resolution also in long direction
- 100 MHz clock to achieve 10 ns time binning

Chip design in progress, target submission date: ~May 2018

Data Out

Allpix² simulation framework

- Modular simulation framework for silicon tracking detectors
- Simulates full chain from incident radiation to digitized hits
- Modern and well-documented C++ code
- Full Geant4 simulation of charge deposition
- Fast charge propagation using drift-diffusion model, can import electric fields in the TCAD DF-ISE format
- Simulation of HV-CMOS sensors with capacitive coupling
- Easy to add new modules for new digitizers, other output formats, etc.
- For Introduction, User manual and code reference visit: https://cern.ch/allpix-squared

Allpix² validation

- Validation ongoing using test-beam data:
 - Timepix3 planar sensor assemblies: Charge distribution, cluster size and spatial residuals in good agreement with test beam data
- New sensor types and features are being added by users:
 - SOI pixel detectors
 - capacitively coupled HV-CMOS sensors
 - **ELAD** sensors

0.04

0.03

0.02

0.01

-0.04 -0.02

0.02

Residual (mm)

0.04

0