

Calorimeter Technologies

Frank Simon

Max-Planck-Institut für Physik

on behalf of the CLICdp collaboration

- Requirements for calorimetry at CLIC
- The CLICdet calorimeter system
- Calorimeter technologies
 - ECAL: Silicon, Scintillator + SiPMs
 - HCAL: Scintillator + SiPMs
 - Common items: Electronics
- Prototype performance in test beams
- Optimisation of the CLICdet calorimeter design

Requirements for Calorimetry at CLIC

- Hadronic multi-jet final states prevalent in CLIC physics: Jet energy reconstruction and resolution of key importance
 - Event reconstruction using PFA in highly granular calorimeters
- Challenging environment: "pile-up" of γγ→hadrons needs to be reduced
 - high granularity and ns level timing
- A "CALICE like" calorimeter system

The CLICdet Calorimeter System

Key parameters:

ECAL

Depth: 40 layers, 22 X_0 (~ 1 λ_l)

Absorber: W, 1.9 mm / layer

Active elements: Silicon

Granularity: 5 x 5 mm²

HCAL

Depth: 60 layers, $7.5 \lambda_1$

Absorber: Stainless Steel, 20 mm / layer

Active elements: Scintillator tiles / SiPMs

Granularity: 30 x 30 mm²

- Silicon / Tungsten calorimeter
 - Planar silicon pad sensors

- Aggressive original ILD design made more realistic:
 Assume 3.15 mm space between W absorber layers
 - up from 2.2 mm

N.B. Similar changes also made in ILD

 Extensive experience in CALICE, including complex mechanical design

 Silicon activities profit enormously from CMS HGCAL project - CERN LCD group directly involved in sensor testing & test beam activities

Acquiring experience with multiple vendors, large scale production and testing, electronics, ...

 Silicon activities profit enormously from CMS HGCAL project - CERN LCD group directly involved in sensor testing & test beam activities

Acquiring experience with multiple vendors, large scale production and testing, electronics, ...

- Scintillator with SiPM readout also studied as an option for ECAL in CALICE
 - Small scintillator tiles (10 x 10 mm²) tested in CERN LCD group, larger prototype so far only built with strips lead by Shinshu

 Less compact than silicon, uniformity requirements still need to be fully understood

- Scintillator tile + SiPM readout: Established by CALICE
 - Technology proven with physics prototype (2006 2011)

- Scintillator tile + SiPM readout: Established by CALICE
 - Technology proven with physics prototype (2006 2011)

- Scintillator tile + SiPM readout: Established by CALICE
 - Technology proven with physics prototype (2006 2011)

And the technology has since evolved to allow scaling to large systems:

A first simplification of the scintillator tiles: Blue-sensitivity of current SiPMs enables fiberless coupling, combined with specialized tile geometries

SiPMs in surface-mount packages for pick-and-place machines, together with fiberless tiles, pave the way towards automatic assembly of active layers

Substantial improvements in SiPM performance enable auto-triggering, essentially noise-less detector

• Compact design now being implemented in CALICE AHCAL technological prototype

- Cassette thickness ~ 6.5 mm, including 2 x 0.5 mm stainless steel in covers
 - 1 mm additional tolerance per layer:
 - 7.5 mm space between absorbers

• Compact design now being implemented in CALICE AHCAL technological prototype

- Cassette thickness ~ 6.5 mm, including 2 x 0.5 mm stainless steel in covers
 - 1 mm additional tolerance per layer:
 - 7.5 mm space between absorbers

• Scalable technology:

injection-molded scintillator tiles

• Compact design now being implemented in CALICE AHCAL technological prototype

- Cassette thickness ~ 6.5 mm, including 2 x 0.5 mm stainless steel in covers
 - 1 mm additional tolerance per layer:
 - 7.5 mm space between absorbers

• Scalable technology:

Semi- automatic wrapping of scintillator tiles in reflective foil

injection-molded scintillator tiles

• Scalable technology:

Automatic placement on electronics boards

Scalable technology:

Automatic placement on electronics boards

Precise cassette elements and absorber structures

Scalable technology:

Automatic placement on electronics boards

Precise cassette elements and absorber structures

Currently ongoing construction for a full hadronic prototype with 23k channels - in May 2018 in beam

Scalable technology:

Automatic placement on electronics boards

Technology also used in CMS HGCAL - closely follows CALICE design, with some changes imposed by LHC environment

Precise cassette elements and absorber structures

Currently ongoing construction for a full hadronic prototype with 23k channels - in May 2018 in beam

Common Features - Electronics

- Front-end electronics directly integrated into detector volume
 - CALICE and CMS make use of same ASIC family
- ASIC provides extended dynamic range by dual gain mode, 12 bit ADC
- Time stamping capability better than 1 ns for linear collider optimised operation: Satisfies CLIC background rejection requirements
- Auto triggering: Enables triggerless operation of the calorimeter

Common Features - Electronics

- Front-end electronics directly integrated into detector volume
 - CALICE and CMS make use of same ASIC family
- ASIC provides extended dynamic range by dual gain mode, 12 bit ADC
- Time stamping capability better than 1 ns for linear collider optimised operation: Satisfies CLIC background rejection requirements
- Auto triggering: Enables triggerless operation of the calorimeter

0.5 ns bunch to bunch spacing312 bunches per train

- A key requirement to achieve maximum compactness: No active cooling in detector volume: Low-power electronics!
- Power-pulsing allowed by bunch train structure of CLIC - allows a duty cycle of < 1% for front-end electronics
 - Capability integrated in current CALICE electronics

Calibration of Imaging Calorimeters

- The large number of cells requires a dedicated calibration strategy:
 - Each individual cell calibrated with muons "on the MIP scale": provides cell-by-cell inter-calibration

 Typical uncertainties of 0.4% in ECAL, 2% in HCAL (statistical) - for Si stable on the ~ % level, for SiPMs temperature correction key

Calibration of Imaging Calorimeters

- The large number of cells requires a dedicated calibration strategy:
 - Each individual cell calibrated with muons "on the MIP scale": provides cell-by-cell inter-calibration

 Typical uncertainties of 0.4% in ECAL, 2% in HCAL (statistical) - for Si stable on the ~ % level, for SiPMs temperature correction key

 Can be monitored on the electronics module level in-situ with track segments in hadronic showers

Calibration of Imaging Calorimeters

- The large number of cells requires a dedicated calibration strategy:
 - Each individual cell calibrated with muons "on the MIP scale": provides cell-by-cell inter-calibration

 Typical uncertainties of 0.4% in ECAL, 2% in HCAL (statistical) - for Si stable on the ~ % level, for SiPMs temperature correction key

 Can be monitored on the electronics module level in-situ with track segments in hadronic showers

- SiPM based calorimeter require an additional saturation correction based on signal amplitude
- Energy calibration (MIP -> GeV) with showers - geometry dependent, stable

Total energy systematics on the 1% - 3% level, comparable to observed deviations from linearity

 Electromagnetic performance of CALICE SiW ECAL

• Electromagnetic performance of CALICE SiW ECAL

 Two-particle separation in the calorimeters using Pandora Algorithms

• Electromagnetic performance of CALICE SiW ECAL

- Two-particle separation in the calorimeters using Pandora Algorithms
- Front-end electronics tested in 2T magnetic field with power pulsing

 Electromagnetic performance of CALICE SiW ECAL

 Two-particle separation in the calorimeters using Pandora Algorithms

• Small "electromagnetic prototype" based on latest technological prototype elements tested in 1.5 T field with electron beam

60 GeV e⁻, 1.5 T

Energy Resolution & Software Compensation CALLO

- Use local energy density information to adjust weight of each hit in energy sum
 - Corrects for non-compensating nature of calorimeters: Lower weight for electromagnetic subshowers
 - Also corrects for very high local energy deposits due to hadronic activity

~ 25% improvement in hadronic energy resolution

stochastic term: 57.6%

constant term: 1.6%

Energy Resolution & Software Compensation CALLO

- Use local energy density information to adjust weight of each hit in energy sum
 - Corrects for non-compensating nature of calorimeters: Lower weight for electromagnetic subshowers
 - Also corrects for very high local energy deposits due to hadronic activity

~ 25% improvement in hadronic energy resolution

stochastic term: 57.6% constant term: 1.6%

- Also implemented in PandoraPFA
 - HCAL only at present
 - improves cluster / track matching at reclustering stage and neutral hadron energy estimate

Software Compensation

- Also implemented in PandoraPFA
 - HCAL only at present
 - improves cluster / track matching at reclustering stage and neutral hadron energy estimate

- Successfully transferred from ILD to CLIC
 - wider energy range: 1.5 TeV maximum energy, instead of 250
 - training with neutrons and K_L^0 , wide energy range

- The main driver: Jet energy resolution in CLIC environment
 - Jet energy resolution studied for different ECAL geometries and granularities

• 5 x 5 mm² cell size a good compromise, further improvement possible, but at the expense of significant increase in channel count

- The main driver: Jet energy resolution in CLIC environment
 - Jet energy resolution studied for different ECAL geometries and granularities

• 5 x 5 mm² cell size a good compromise, further improvement possible, but at the expense of significant increase in channel count

• From a jet energy resolution perspective, ~ 25 layers distributed over 23 X_0 appear sufficient, with 17 layers with finer sampling and 8 layers with thicker absorber

- But: Optimisation purely on jet energy resolution neglects photon performance at high energy
 - May be crucial for high mass objects decaying to photons

 Tricky optimisation: wide energy range of photons pushes for high sampling frequency throughout whole ECAL CLICdp-Note-2017-001

- But: Optimisation purely on jet energy resolution neglects photon performance at high energy
 - May be crucial for high mass objects decaying to photons

• Tricky optimisation: wide energy range of photons pushes for high sampling frequency throughout whole ECAL

Best performance obtained for a 40 layer ECAL with 1.9 mm
/ layer, substantially better than 25 layer option with coarse
layers in rear: Improvement at all energies, with up to
~40% for TeV photons

• Jet energy resolution as a function of the number of layers (keeping calorimeter thickness constant): high sampling beneficial! (performed in ILD context)

• Jet energy resolution as a function of the number of layers (keeping calorimeter thickness constant): high sampling beneficial! (performed in ILD context)

 Cell size optimisation with software compensation (separate training for each data point, binning range not optimal for low energies and small cells)

- Tungsten was thoroughly scrutinized as a possible absorber material for the barrel HCAL
 - More compact: HCAL thickness reduced by 40 cm reduced radius of solenoid: cost savings of ~ 40 MCHF
 - However: Substantially more expensive material (extra costs of ~ 80 MCHF)

- Tungsten was thoroughly scrutinized as a possible absorber material for the barrel HCAL
 - More compact: HCAL thickness reduced by 40 cm reduced radius of solenoid: cost savings of ~ 40 MCHF
 - However: Substantially more expensive material (extra costs of ~ 80 MCHF)

• Studied physics impact of absorber in extensive test beam program with CALICE W-AHCAL

- Energy resolution of W-AHCAL and Fe-AHCAL without software compensation essentially identical: stochastic term of ~ 58%/√E
- But: No potential for software compensation in W-AHCAL: ~ compensating by construction
- Significant improvement in Fe-AHCAL with software compensation
- → Hadronic energy resolution in Steel~ 20% 25% better than in Tungsten

- A critical issue in tungsten (in particular when combined with scintillator): Delayed signals from neutrons
 - Measured with a dedicated scintillator-based timing detector (T3B) behind W-AHCAL (very limited coverage)
 - \Rightarrow Substantially more pronounced late shower activity in W, with \sim x5 more detector hits at times > 50 ns
 - Tungsten requires a longer integration time in HCAL: 100 ns vs 10 ns in Steel, larger impact of background

- A critical issue in tungsten (in particular when combined with scintillator): Delayed signals from neutrons
 - Measured with a dedicated scintillator-based timing detector (T3B) behind W-AHCAL (very limited coverage)
 - \Rightarrow Substantially more pronounced late shower activity in W, with \sim x5 more detector hits at times > 50 ns
 - Tungsten requires a longer integration time in HCAL: 100 ns vs 10 ns in Steel, larger impact of background
- PFA simulation studies indicate roughly equal performance (within ± 7%) for W and Fe w/o background and w/o software compensation, with a slight advantage (up to 7%) for Fe when using HP physics lists (W resolution highly physics-list dependent, Fe stable)
- With background Fe is better in all scenarios

- A critical issue in tungsten (in particular when combined with scintillator): Delayed signals from neutrons
 - Measured with a dedicated scintillator-based timing detector (T3B) behind W-AHCAL (very limited coverage)
 - \Rightarrow Substantially more pronounced late shower activity in W, with \sim x5 more detector hits at times > 50 ns
 - Tungsten requires a longer integration time in HCAL: 100 ns vs 10 ns in Steel, larger impact of background
- PFA simulation studies indicate roughly equal performance (within ± 7%) for W and Fe w/o background and w/o software compensation, with a slight advantage (up to 7%) for Fe when using HP physics lists (W resolution highly physics-list dependent, Fe stable)
- With background Fe is better in all scenarios

Overall, the disadvantages of W outweigh the advantages: Use Stainless Steel as absorber

- Calorimetry for CLIC is very well developed and understood based on technical developments by CALICE and, recently, also CMS
 - The technological concepts for sensors, electronics and mechanics used in CLICdet are demonstrated by large prototypes in test beams
- CLICdet uses highly granular calorimeter systems:
 - A 40 layer Silicon-Tungsten ECAL optimised for jet energy and photon resolution over a wide energy range up to the TeV region
 - A 60 layer Stainless Steel Plastic Scintillator/ SiPM HCAL optimised for jet energy resolution and performance in the CLIC background environment
- Reconstruction techniques developed and demonstrated on test beam data, such as software compensation, are implemented in the full CLIC detector simulations

Extras

