VBF – V from ATLAS

Sabine Lammers, Andy Pilkington on behalf of the EW W, Z analysis teams April 18, 2018 LHC-EWWG Measurement of VBF Zjj production at Vs=8TeV and Vs=13TeV

- EWK Zjj production is *rare*, just 1% of the inclusive Zjj production at the LHC
 - Extract electroweak cross section in EWK-enhanced phase space regions (high m_{jj}, low central jet activity)
 - Measure inclusive Zjj cross sections to ensure longevity

Measurements of VBF Wjj production at Vs=7TeV and Vs=8TeV

- Fiducial cross section measurement using control region to constrain shape of strong Wjj background (technique adapted from 8 TeV Zjj analysis)
- Comprehensive set of differential cross sections (using MC for strong Wjj)
 - Strong and EW Wjj dominated processes (all other backgrounds subtracted)
 - EW Wjj (all backgrounds, including strong Wjj, subtracted)
- Limits on anomalous WWZ, WW γ TGCs

Zjj: Five fiducial regions - different sensitivity to electroweak Zjj

Object	baseline	high-mass	search	control	$high-p_{ m T}$
Leptons	$ \eta^{\ell} < 2.47, p_{\rm T}^{\ell} > 25 { m GeV}$				
Dilepton pair	$81 \le m_{\ell\ell} \le 101 \mathrm{GeV}$				
	— $p_{\mathrm{T}}^{\ell\ell} > 20 \mathrm{GeV}$				
Jets	$ y^j < 4.4, \ \Delta R_{j,\ell} \ge 0.3$				
	$p_{\rm T}^{j1} > 55 { m ~GeV}$			$p_{\rm T}^{j1} > 85~{\rm GeV}$	
	$p_{\rm T}^{j2} > 45 { m ~GeV}$			$p_{\rm T}^{j2}>75~{\rm GeV}$	
Dijet system	_	$m_{jj} > 1 { m ~TeV}$	$m_{jj} > 2$	$250 {\rm GeV}$	_
Interval jets			$N_{\rm jet} = 0$ $P_{\rm T} >$	$\begin{array}{c} \textbf{25 GeV} \\ N_{\text{jet}} \geq 1 \end{array}$	
Zjj system			$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$	$p_{\rm T}^{\rm balance,3} < 0.15$	—

- ---- Z-boson selection
- --- Baseline jet selection

--- Probe of high-p_T or high-mass

--- Search/control cuts for electroweak extraction

Wjj – several fiducial regions for different measurements

EW Wjj measurement is systematics dominated -> tighter cuts on hadronic system $y_1 + y_2$ Ample statistics allows for broad set of measurements, Central region including first differential EW cross sections. Region name Requirements Preselection Lepton $p_{\rm T} > 25 \, {\rm GeV}$ Lepton $|\eta| < 2.5$ $E_{\rm T}^{\rm miss} > 25 {
m GeV}$ $m_{\rm T} > 40 \text{ GeV}$ $p_{\rm T}^{j_1} > 80 \,{\rm GeV}$ **Inclusive** centrality $p_{\rm T}^{J_2} > 60 \,{\rm GeV}$ Jet |y| < 4.4Forward-lepton/ **Forward-lepton** $M_{ii} > 500 \text{ GeV}$ central-jet region control region $\Delta y(j_1, j_2) > 2$ $N_{\rm jets}^{\rm cen} \ge 1$ $N_{\rm jets}^{\rm cen} = 0$ Lepton $\Delta R(j, \ell) > 0.3$ $N_{\rm lepton}^{\rm cen} = 0$ $N_{\rm lepton}^{\rm cen} = 0$ Fiducial and differential measurements $C_{\ell \ (j)} \equiv \left| \frac{y_{\ell \ (j)} - \frac{y_1 + y_2}{2}}{y_1 - y_2} \right|$ $N_{\rm lepton}^{\rm cen} = 1, N_{\rm jets}^{\rm cen} = 0$ Signal region $N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} = 0$ Forward-lepton control region Central-jet $N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} \ge 1$ $C \le 0.4$ Central-jet validation region validation region Signal region Differential measurements only $\begin{array}{l} N_{\rm jets}^{\rm cen} \geq 1 \\ N_{\rm lepton}^{\rm cen} = 1 \end{array}$ $\begin{array}{l} N_{\rm jets}^{\rm cen}=0\\ N_{\rm lepton}^{\rm cen}=1 \end{array}$

Inclusive regions

Forward-lepton/central-jet region

High-mass signal region

Anomalous coupling measurements only

High- q^2 region

 $M_{jj} > 1$ TeV, $N_{\text{lepton}}^{\text{cen}} = 1$, $N_{\text{jets}}^{\text{cen}} = 0$, $p_{\text{T}}^{j_1} > 600$ GeV

 $M_{ii} > 0.5$ TeV, 1 TeV, 1.5 TeV, or 2 TeV

 $M_{jj} > 1$ TeV, $N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0$

 $N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} \ge 1$

Jet centrality

jet 2

Inclusive Zjj measurements of each region at Vs=8TeV and Vs=13TeV

Differential inclusive Zjj cross section measurements

EWK Zjj: extraction of signal

- Signal extracted using a two template fit in EWK enhanced 'search' region
- Strong Zjj background template constrained in a EWK-suppressed 'control' region
 - Reduces impact of experimental (JES/JER) uncertainties and theoretical modelling uncertainties

Electroweak Zjj cross sections at Vs=8TeV and Vs=13TeV

Wjj: inclusive measurements

Fiducial region

Wjj: fiducial measurements

- Strong Wjj background constrained with data in control/validation region
- Template fit of dijet mass distribution in signal region used to extract EW cross section
- Uncertainties estimated by propogating 1σ variation through constraint and template fit.

- EW Wjj enhanced at high dijet inv. mass
- Data driven Multijets background estimation
- Other backgrounds estimated with MC

Wjj: fiducial measurements

\sqrt{s}	$\sigma_{\rm meas}^{\rm fid}$ [fb]	$\sigma_{ m SM}^{ m fid}$ [fb]	Acceptance \mathcal{A}	$\sigma_{ m meas}^{ m inc}$ [fb]
7 TeV	144 ± 23 (stat) ± 23 (exp) ± 13 (th)	144 ± 11	0.053 ± 0.004	2760 ± 670
8 TeV	$159 \pm 10 \text{ (stat) } \pm 17 \text{ (exp) } \pm 15 \text{ (th)}$	198 ± 12	0.058 ± 0.003	2890 ± 510

Wjj: differential measurements of Strong+EW Wjj

Wjj: differential measurements of EW-only Wjj

Limits on aTGCs (I)

• Anomalous WWZ couplings parameterised using an effective lagrangian:

Limits on aTGCs (II) – using Zjj at Vs=8TeV

- Number of observed events in data at m_{jj} > 1 TeV used to set limits on the aTGC parameters:
 - SHERPA used to parameterise the m_{ii} dependence on the aTGC.
 - Dipole form factor with two choices of unitarisation scale, Λ =6TeV and Λ =infinity
 - Electroweak cross section also measured in this region, for good measure:

aTGC	$\Lambda = 6 \text{ TeV} (\text{obs})$	$\Lambda = 6 \text{ TeV} (\exp)$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \; (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

$$\sigma_{\rm EW}^{m_{jj}>1{\rm TeV}} = 10.7 \pm 0.9 \,({\rm stat}) \pm 1.9 \,({\rm syst}) \pm 0.3 \,({\rm lumi})$$

Limits on aTGCs (III) – using Wjj at Vs=8TeV

- Number of observed events in data at m_{jj} > 1 TeV and p_{T,jet} > 600 GeV used to set limits on the aTGC parameters:
 - SHERPA used to parameterise the m_{jj} dependence on the aTGC.
 - Dipole form factor with two choices of unitarisation scale, Λ =4TeV and Λ =infinity

	$\Lambda = 4 \text{ TeV}$		$\Lambda = \infty$		
	Expected	Observed	Expected	Observed	
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]	
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.19, 0.19]	[-0.15, 0.16]	
λ_V	[-0.16, 0.12]	[-0.13, 0.090]	[-0.064, 0.054]	[-0.053, 0.042]	
κ _Z	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]	
$\tilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0.058, 0.057]	[-0.047, 0.046]	