

Vector Boson Scattering EW WG

Jakob Salfeld

For CMS Collaboration April 18th, 2018

Quartic Gauge Couplings

LHC can probe W and Z quartic couplings in Standard Model for the first time

- SM predicts couplings:
- tree-level QGC: WWWW, WWZZ, WWZY, WWYY

- ▶ tree-level TGC: WWZ,WWY
- ZZZ, ZZY ZYY, YYY, ZZZZ, ZZZY, ZZYY, ZYYY, YYYY absent in SM

 TGC and QGC (involving photons) studied at LEP and Tevatron t-channel Ζ,γ and H exchange cancel divergent quartic coupling of massive gauge bosons

Electroweak Diboson Production

• LHC can probe W and Z quartic couplings in Standard Model for the first time (massive bosons) $q = \frac{q'}{q} + \frac{q'}{q}$

 At LO production cross section is sum of terms also involving strong coupling constant

$\sigma_{EW}(VV+jj)$	$\sigma_{EW} \propto \mathcal{O}(\alpha_{EW}^6)$	$\sigma_{EW \times QCD} \propto \mathcal{O}(\alpha_{EW}^5 \alpha_S)$	$\sigma_{QCD} \propto \mathcal{O}(\alpha_{EW}^4 \alpha_S^2)$
$\frac{1}{\sigma_{QCD}(VV+jj)}$ largest for W=W= production	EW Signal	Interference, uncertainty or added to background, usually O(1%)	Background (QCD induced)

most sensitive to probe quartic gauge coupling

Beyond The SM Interpretation

1.) Effective Field Theory (Eboli basis, orthogonal to aTGC)

Operators ordered terms of covariant derivatives only (Scalar), field strength tensors only (Tensor) or both (Mixed)

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=WWW,W,B,\Phi W,\Phi B} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j=1,2} \frac{f_{S,j}}{\Lambda^4} \mathcal{O}_{S,j} + \sum_{j=0,\dots,9} \frac{f_{T,j}}{\Lambda^4} \mathcal{O}_{T,j} + \sum_{j=0,\dots,7} \frac{f_{M,j}}{\Lambda^4} \mathcal{O}_{M,j}$$

possible to map onto specific model

arxiv.1307.8170

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA	
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	X	X	X]
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	X	X	X	X	X	X	X]
$\mathcal{O}_{M,2} \ , \mathcal{O}_{M,3}, \ \mathcal{O}_{M,4} \ , \mathcal{O}_{M,5}$		X	X	X	X	X	X			ar
$\mathcal{O}_{T,0} \ , \mathcal{O}_{T,1} \ , \mathcal{O}_{T,2}$	X	X	X	X	Х	X	X	X	X	
$\mathcal{O}_{T,5} \ , \mathcal{O}_{T,6} \ , \mathcal{O}_{T,7}$		X	X	X	X	X	X	X	X]
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			X	X	X	X]

rxiv:<u>1309.7890</u>

2.) Direct diboson resonance searches reach (M_X ~1-2 TeV)

Depends on: spin 0/1/2, charge, fermion/boson couplings

LHC VBS Studies

- WW largest EW cross section and signal to background ratio
 - So far the only VBS process experiementally confirmed
- WZ and ZZ processes become feasible with the full Run-2 dataset
 - Iarger QCD VV background, controlled in 2-jet side bands
- Semi-leptonic final states sensitive to BSM

sqrt(s)	VBS process	ATLAS	CMS	Comment	
	EW W±W± (IvIv)	<u>PRL 113, 141803</u> <u>PRD 96, 012007</u>	<u>PRL 114 (2015) 051801</u>	ATLAS finds evidence	
8 TeV	EW Ζγ (vv/llγ)	<u>JHEP07(2017)107</u>	<u>Phys.Lett. B770 (2017)</u> <u>380-402</u>	CMS finds evidence	
	EW Wy (Ivy)	x	<u>JHEP 1706 (2017) 106</u>	CMS finds 2.7 σ	
	EW WZ (3lv)	<u>PRD 93, 092004 (2016)</u>	<u>PRL 114 (2015) 051801</u>	ATLAS places limits on aQGC, CMS meas. QCD+EW xsec	
	EW WV (Ivjj)	<u>PRD 95 (2017) 032001</u>	x	limits on aQGC	
	EW W±W±	x	<u>PRL 120, 081801</u>	CMS first observation	
13 TeV	EW ZZ (4I)	x	<u>Phys. Lett. B 774 (2017)</u> <u>682</u>	CMS finds 2.7 σ	
	EW WZ (3lv)	X	<u>PRL 119 (2017), 141802</u>	VBF charged Higgs analysis (same phase space, no cross section measurement, yet)	

CMS VBS Studies

- W±W± largest EW cross section and signal to background ratio
 - So far the only VBS process experiementally confirmed
- WZ and ZZ processes become feasible with the full Run-2 dataset
 - Iarger QCD VV background, controlled in 2-jet side bands

Semi-leptonic final states sensitive to BSM

•

Both well validated in control regions, outside the signal region

e.g. inverted b-jet requirements (fake enriched) or dijet cuts (QCD VV enriched) 6

Experimental Signature and Predictions

VBS processes have distinct signature in the detector: two jets

- Iarge dijet invariant mass (m_{JJ} > 500 GeV)
- Iarge pseudorapidity separation
- (di-)boson system central wrt dijets

SM processes mostly studied in fully leptonic final states

semi-leptonic decays affected by background, but sensitive to BSM physics

- Iepton: p_T`s in general >20-30 GeV, lηl< 2.5 (2.4)</p>
- ▶ Jets p_T > 30 GeV

Experiments do not always use similar theoretical tools

- ATLAS: POWHEG/WHIZARD/SHERPA for Signal, WHIZARD for aQGCs, interference e.g. SHERPA
- CMS: MadGraph for Signal and aQGCs, interference PHANTOM
- Theoretical predicitions for EW production emerging at NLO (EW+QCD) (for W[±]W[±] arXiv:1708.00268)

W[±]W[±] VBS (Observation 13 TeV)

- Measurement performed inclusively in ee, eµ, µµ channel, two same-sign leptons
 - Major backgrounds estimated from the data: Fake leptons (60%), WZ (QCD+EW), charge flip (for electrons (sub) per mille level)
 - Major syst. unc.: jet energy scale, fake background
 - fiducial volume lepton: lηl< 2.5, p_T > 20 GeV, jets lηl< 5, p_T > 30 GeV, m_{JJ} > 500 GeV, lΔη_{JJ}l > 2.5
- Fit performed in 2 dimensions (m_{JJ} vs m_{II}) to extract best-fit signal strength modifier

ZZ VBS (13 TeV)

ZZjj production measurement performed in fully leptonic final state

- BDT used as final discriminant
- Jets p_T > 30 GeV, lepton: p_T >5(7) GeV muon (electron) ,20/10(12) GeV (leading subleading muon (electron))
- ▶ m_{JJ} >100 GeV, Z candidates 60 < m_{II} < 120 GeV</p>
- **b** for fiducial volume only change lepton kinematics $|\eta| < 2.5$, $p_T > 5$ GeV
- Leading background QCD-induced ZZ+jets production
- produced at NLO aMC@NLO
- loop induced (gg->ZZ) with MCFM

ZZ background validated in control region

inverted dijet cuts: m_{JJ} < 400 GeV OR ΙΔη_{JJ}I < 2.4</p>

ZZ VBS (13 TeV)

ZZjj production measurement performed in fully leptonic final state
 Exploit boosted decision tree to enhance sensitivity (7 most performant variables used)

▶ m_{JJ}, Δη_{JJ}, m_{ZZ}, Z_{1,2}-centrality, vector/scale sum of VBF-jets and of ZZ+jets • 2.7 (1.6) observed (expected) over bkgd-only hypothesis $\sigma_{EW}(pp \rightarrow ZZjj \rightarrow \ell\ell\ell'\ell'jj) = 0.40^{+0.21}_{-0.16} (stat) ^{+0.13}_{-0.09} (syst) fb$

Anomalous Quartic Gauge Couplings 2

Important to probe all diboson processes to cover all possible EFT operators

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	Х	Х						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	X	X	X	X	Х	X	X		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		X	X	X	Х	X	Х		
$\mathcal{O}_{T,0} \;, \!\mathcal{O}_{T,1} \;, \!\mathcal{O}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		X	X	X	Х	Х	Х	Х	Х
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			X	X	Х	Х

- Indirectly probing mass scales ~1 TeV
- Gain in sensitivity can be obtained by combination, if two analyses have similar sensitivity

VBF Diboson Resonances (13 TeV)

CMS performed searches for VBF H++ and H+ production at 13 TeV

- Higgs triplet models give rise to doubly-charged Higgs bosons
- Search performed in fully leptonic final-states
 - VBF/VBS dijet topology cuts
 - W[±]W[±] analysis most performant when interpreted in Georgi-Machacek Model

Inclusive VV BSM Searches

Many inclusive VV resonance searches performed

Probing mainly qq->X production

•

$$c_f^X \times c_V^X$$
 VS $c_V^X \times c_V^X$

complemented with VBF searches, could improve measuring/probing resonance couplings to vector bosons and fermions

Table 2,3 from T. Dorigo, arxix

Expt.	CM energy	Int. Lum.	Year	Decay modes	Considered models	Ref.
	(TeV)	(fb^{-1})				
ATLAS	7	1.02	2012	l u l' l'	EGM W', LSTC ρ_T	[354]
ATLAS	7	4.7	2013	l u qar q	EGM W'	[318]
ATLAS	8	20.3	2014	$l\nu l'l'$	EGM W' , HVT	[355]
ATLAS	8	20.3	2014	$llqar{q}'$	EGM W'	[356]
ATLAS	8	20.3	2015	$llqar{q}'$	H^{\pm}, HTM	[357]
ATLAS	8	20.3	2015	l u qar q	EGM W'	[319]
ATLAS	8	20.3	2015	$q \bar{q} q \bar{q}'$	EGM W'	[320]
ATLAS	8	20.3	2015	Combination	EGM W'	322
ATLAS	13	3.2	2016	Combination	HVT bosons	[323]
CMS	7	5.0	2012	l u l' l'	SSM W', ρ_T	[358]
CMS	7	5.0	2012	$llqar{q}', u u qar{q}'$	SSM W'	[359]
CMS	7	5.0	2012	$q\bar{q}q\bar{q}'$	W'	[325]
CMS	8	19.7	2014	$q\bar{q}q\bar{q}'$	W'	[326]
CMS	8	19.7	2014	Combination	model-independent	[327]
CMS	8	19.5	2014	l u l' l'	EGM W'	[360]
CMS	13	2.7	2016	Combination	HVT and model-independent	[328]
CMS	13	15.2	2017	l u l' l'	H^{\pm}	[361]
CMS	8+13	19.7 + 2.7	2017	Combination	HVT	[329]

Expt.	CM energy	Int. Lum.	Year	Decay modes	Considered models	Ref.
	$({\rm TeV})$	(fb^{-1})				
ATLAS	7	4.7	2012	l u l u	$\mathrm{RS}~G^*,G^*_{bulk}$	[317]
ATLAS	7	4.7	2013	l u qar q'	${ m RS}~G^*,G^*_{bulk}$	[318]
ATLAS	8	20.3	2015	l u qar q'	RS G^*_{bulk}	[319]
ATLAS	8	20.3	2015	q ar q' q ar q'	RS G^*_{bulk}	[320]
ATLAS	8	20.3	2015	l u qar q', l u l u	Heavy neutral Higgs	[321]
ATLAS	8	20.3	2015	Combination	RS G^*_{bulk}	[322]
ATLAS	13	3.2	2016	qar q' l u,qar q'qar q'	Scalar singlets, HVT bosons, G^*_{bulk}	[323]
CMS	7	5	2012	Combination	Fermiophobic Higgs bosons	[324]
CMS	7	5	2012	q ar q' q ar q'	RS G^*	[325]
CMS	8	19.7	2014	q ar q' q ar q'	RS G^* and G^*_{bulk}	326
CMS	8	19.7	2014	Combination	RS G^* and G^*_{bulk}	[327]
CMS	13	2.7	2016	l u qar q',qar q'qar q'	RS G^*_{bulk} , HVT bosons	[328]
CMS	8+13	19.7 + 2.7	2017	Combination	HVT Singlets and triplets, RS G^*_{bulk}	[329]

Higgs Couplings

•

•

- Cross section of VBS processes depend on Higgs vector boson couplings
- **Example: Two Higgs Doublet Models**

$$g_{hVV}^{2\text{HDM}}/g_{hVV}^{\text{SM}} = \sin(\beta - \alpha)$$

 $g_{HVV}^{2\text{HDM}}/g_{HVV}^{\text{SM}} = \cos(\beta - \alpha)$

	-				
		Cross Sect	ions (fb)		
Channels	$\sin(eta-lpha)=0.5$	0.7	0.9	SM $(C_v = 1)$	
$W^+W^- o \ell^+ \nu \ell^- \bar{\nu}$	0.51	0.46	0.40	0.39	
$W^+W^+ \to \ell^+ \nu \ell^+ \nu$	0.20	0.17	0.14	0.14	
$W^-W^- \to \ell^- \bar\nu \ell^- \bar\nu$	0.083	0.075	0.070	0.069	
$W^+Z \to \ell^+ \nu \ell^+ \ell^-$	0.016	0.013	0.011	0.010	
$W^-Z\to \ell^-\bar\nu\ell^+\ell^-$	$1.0 imes 10^{-2}$	8.5×10^{-3}	$7.6 imes 10^{-3}$	$7.4 imes 10^{-3}$	
$ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	$8.4 imes 10^{-3}$	$6.4 imes 10^{-3}$	$4.6 imes 10^{-3}$	4.4×10^{-3}	<u>arxiv:1303.6335</u>

Conclusions

 Study of VBS processes complementary approach to study mechanism of electroweak symmetry breaking and the Higgs sector

- One of the reasons the LHC was built, slightest deviations of higgs couplings will lead to changes in cross sections and ultimately unitarity violation
- Production cross section measurements involving quartic gauge couplings are progressing rapidly
 - First electroweak diboson production mechanism experimentally confirmed with the analyses of W[±]W[±] processes

 Focussed on 13 TeV results, massive gauge bosons, see slide 5 details on VBS analysis at 8 TeV involving photons

Many more results to appear on full Run-2 dataset ~ 150 fb⁻¹, exciting times ahead

So far most results based on 20-40 *fb*⁻¹ **on 8 and 13 TeV**

Additional Material

aQGC EFT Operators

Grouped in covariant derivatives, Field Strength Tensors and both (mixed)

$$\mathcal{O}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] ,$$

$$\mathcal{O}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] ,$$

$$\begin{split} \mathcal{O}_{M,0} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,\\ \mathcal{O}_{M,1} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,\\ \mathcal{O}_{M,2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,\\ \mathcal{O}_{M,3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,\\ \mathcal{O}_{M,4} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} ,\\ \mathcal{O}_{M,5} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} ,\\ \mathcal{O}_{M,6} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} W^{\beta\nu} D^{\mu} \Phi \right] ,\\ \mathcal{O}_{M,7} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\nu} \Phi \right] , \end{split}$$

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right] ,$$

$$\mathcal{O}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right] ,$$

$$\mathcal{O}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right] ,$$

$$\mathcal{O}_{T,5} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta} ,$$

$$\mathcal{O}_{T,6} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu} ,$$

$$\mathcal{O}_{T,7} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha} ,$$

$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} ,$$

$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} .$$

Quartic Couplings at LHC

At the LHC quartic vector boson couplings are studies in

Triboson production

•

•

•

And vector boson scattering

W[±]W[±] is the golden channel

Smallest largest EW-over-QCD ratio

Number of leptons and VBF topology enhances sensitivity

