Power supply ripples & 6D Frequency Map Analysis

Sofia Kostoglou, Yannis Papaphilippou

Acknowledgments: H. Bartosik, R. De Maria, M. Fitterer, G. Iadarola, D. Pellegrini, N.Triantafyllou
Introduction

- Previous studies: DA studies with power supply ripples for the HL-LHC triplet showed a sensitivity at 300 & 600 Hz *

- The combination of non-linear resonances and modulation effects: degradation of dynamic aperture and beam lifetime.

- Transverse tune modulation: additional resonance sidebands, which can reach the footprint and cause particle diffusion.

- Frequency Map Analysis in the presence of:
 I. Power supply ripples
 II. Synchrotron motion

* "BEAM DYNAMICS REQUIREMENTS FOR THE POWERING SCHEME OF THE HL-LHC TRIPLET", M. Fitterer, R. De Maria, S. Fartoukh and M. Giovannozzi
Modulation of the betatron tunes (I)

- **Power supply ripples:**
 - Modulation in the current of a quadrupole’s power supply
 - Change in magnetic field
 - Modulation of the normalized quadrupolar strength
Modulation of the betatron tunes (I)

- Power supply ripples:

\[\Delta Q = \frac{1}{4\pi} \int \beta(s)\Delta k(s) \, ds \]

Instantaneous tune

\[Q_{\text{inst}} = Q_0 + \frac{1}{4\pi} \beta K_{\text{depth}} \sin(2\pi Q_p n) \]

\[x(n) = x_0 \cos(2\pi Q_0 n + \frac{\beta K_{\text{depth}}}{4\pi Q_p} \sin(2\pi Q_p n)) \]
Modulation of the betatron tunes (II)

- **Modulation from synchrotron motion:**
 - Chromaticity, synchrotron tune & $\Delta p/p$ define the value of the modulation index.
 - Large modulation index \rightarrow production of higher order harmonics.

\[
Q_{\text{inst}} = Q_0 + \frac{Q'x \Delta p}{p} \sin(2\pi Q_s n)
\]

\[
x(n) = x_0 \cos \left(2\pi Q_0 n + \frac{Q'x}{Q_s} \cdot \frac{\Delta p_{\text{max}}}{p} \sin(2\pi Q_s n) \right)
\]

Instantaneous tune

Transverse motion - Linear approximation

Modulation index
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

\[|\varphi(\omega)| = |< x(n), e^{-i\omega n} >| = | \int e^{-i2\pi fn} \cdot x_h(n) \, dn | \]
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:
 \[|\varphi(\omega)| = |\langle x(n), e^{-i\omega n} \rangle| = \left| \int e^{-i2\pi fn} \cdot \overline{x_h(n)} \, dn \right| \]

- How easy is it to compute the tune of a modulated signal?
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- **Fourier integral:**
 \[|\varphi(\omega)| = | < x(n), e^{-i\omega n} > | = \left| \int e^{-i2\pi fn} \cdot x_h(n) \, dn \right| \]

- **Bessel functions of the first kind:**
 \[x(n) = x_0 \cos(2\pi Q_x n + \beta \sin(2\pi Q_m n)) = x_0 \sum_{m=-\infty}^{\infty} J_m(\beta) \cos(2\pi(Q_x + mQ_m)n) \]
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:
 \[|\varphi(\omega)| = | < x(n), e^{-i\omega n} > | = \left| \int e^{-i2\pi fn} \cdot x_h(n) \, dn \right| \]

- Bessel functions of the first kind:

Amplitude of the Bessel function of the m order

Modulation index

\[\beta > 1.5 \]
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- **Fourier integral:**

\[
|\varphi(\omega)| = | < x(n), e^{-i\omega n} > | = | \int e^{-i2\pi fn} \cdot x_h(n) \, dn |
\]

- **Bessel functions of the first kind:**

Number of turns 1024, \(A_3 = 0.0005 \), \(T_s = 100 \), \(\beta = 0.05 \)

- Modulation frequency is constant
- Increase of modulation depth
- **Modulation index increases**
- Red line: analytical signal
- Black line: signal from tracking
Simplified model with FM – Frequency domain

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

\[|\varphi(\omega)| = | < x(n), e^{-i\omega n} > | = | \int e^{-i2\pi fn} \cdot x_h(n) \, dn | \]

- Bessel functions of the first kind:
 - Modulation frequency decreases
 - Modulation depth is constant
 - Modulation index increases
LHC: Application of correction with Bessel functions

\[\beta = 1.32 \]

Tools
- Sixtrack
- NAFF

Parameters
- 6D footprint
- 19 angles
- 0.1-6.1 \(\sigma \)
- \(\delta p/p = 15\times10^{-5} \)
- \(Q' = 15 \)
- \(\beta^* = 40 \text{ cm} \)
- \((Q_x, Q_y) = (62.31, 60.32) \)
- \(\text{xing} = 150 \ \mu\text{rad} \)
LHC: Application of correction with Bessel functions

Parameters
- 6D footprint
- 19 angles
- 0.1-6.1 σ
- δp/p = 27e-5
- Q' = 15
- β* = 40 cm
- (Qx, Qy) = (62.31, 60.32)
- xing = 150 μrad

β = 2.38
Simplified model with FM: Phase space

- 6th order resonance excited from octupole
- Introduction of modulated quadrupole

- For a small modulation depth the 1st sideband of the 6th order resonance starts to appear
- For a larger modulation depth more particles are trapped inside the 1st sideband
6th order resonance excited from octupole

Introduction of modulated quadrupole

For a small modulation depth the 1st sideband of the 6th order resonance starts to appear

For a larger modulation depth more particles are trapped inside the 1st sideband

For a smaller modulation frequency sidebands approach the main resonance & more sidebands start to appear

Sideband?

↑ Modulation depth, Modulation frequency = ct

↓ Modulation frequency, Modulation depth = ct

Simplified model with FM: Phase space
Simplified model with FM: Phase space

\[\uparrow \text{Modulation depth,} \quad \text{Modulation frequency} = \text{ct} \]

\[\downarrow \text{Modulation frequency,} \quad \text{Modulation depth} = \text{ct} \]

Distance between 1st sideband and main resonance is \(\frac{2 \pm Q_s}{6} \)
Simplified model with FM & 4D Beam-beam

- Resonance conditions:

\[aQ_x + bQ_y + cQ_m = k \text{ for } a, b, c, k \text{ integers} \]

4D BB, modulation depth scan from \(\Delta Q=1\times10^{-6} \) to \(\Delta Q=5\times10^{-4} \)
Simplified model with FM & 4D Beam-beam

- Resonance conditions:

\[aQ_x + bQ_y + cQ_m = k \text{ for } a, b, c, k \text{ integers} \]

4D BB, modulation frequency scan from \(Q_m = 0.2 \) to \(Q_m = 0.05 \)

Linear map, sextupole, octupole, 4D BB, modulating quadrupole, VRF OFF, 2000 turns, 4900 particles
\(E = 6.5 \text{ TeV, } N_{\text{part}} = 2e11, \beta_s = 40\text{cm, } T_s = 5 \text{ turns} \)

1st sideband of 3rd order resonance
LHC: Power supply ripples

- Quadrupoles of the **inner triplet** right and left of IP1 and IP5, large beta-functions increase the sensitivity to non-linear effects

- **Resonance conditions:**

\[
aQ_x + bQ_y + c \frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for } a, b, c, k \text{ integers}
\]
LHC: Power supply ripples

- Quadrupoles of the **inner triplet** right and left of IP1 and IP5, large beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

\[
aQ_x + bQ_y + c \frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for } a, b, c, k \text{ integers}
\]
LHC: Power supply ripples

- Quadrupoles of the **inner triplet** right and left of IP1 and IP5, large beta-functions increase the sensitivity to non-linear effects

- **Resonance conditions:**

\[aQ_x + bQ_y + c \frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for } a, b, c, k \text{ integers} \]

- By increasing the modulation depth, sidebands start to appear in the footprints

\[\Delta Q = 1 \times 10^{-4} \]
LHC: Power supply ripples

- Scan of different ripple frequencies (50-900 Hz)

5D. $E = 6.5$ TeV, $l_{\text{int}} = 510$ A, Beam – beam ON, $\varepsilon_n = 2.5$ μm, $\beta^* = 40$ cm, $q = 15$ ($Q_x, Q_y) = (0.31, 0.60)$, V_{RF} OFF, $\delta_0 = 27 e - 5$, 49 angles, $0.1 - 6.1 \sigma$, sliding NAFF

$f_r = 50.0$ Hz, $A_f = 10^{-7}$ at MQXA.1, MQXA.3, MQXB.A2, MQXB.B2 of IP1, IP5
6D studies

- **Goal**
 - Full dynamics of the beam **along with synchrotron motion**

- **Difference**
 - Coherent motion of the footprint due to synchro-betatron coupling

- **Tools**
 1. Sixtrack for single particle tracking
 2. NAFF

- **Methods**
 - **Long term tracking**: average picture of this motion in frequency space
 - **Instantaneous picture** in the frequency domain → small number of turns & high sampling rate (accuracy)

- **Purpose of the study**
 - Frequency maps with a **30-turn window length** and reasonable number of BPMs
 - **Long term frequency maps** with 1BPM per turn & power supply ripples
Setup & parameters

Parameters

- $E = 6.5 \text{ TeV}$
- 6D Beam beam
- $Q_s = 0.0017$
- $I_{\text{oct}} = 510 \text{ A}$
- $\varepsilon_N = 2.5 \mu\text{m}$
- $\delta = 27\text{e-5}$
- $Q_x = 62.31$
- $Q_y = 60.32$
- $dq = 15$

Setup for 6D FMAs

Multiple BPM analysis

- 200 virtual BPMs
- Adjusted phase between BPMs around the ring to have cleaner spectra (discrepancies for particles at different amplitudes and energies)
- Tracking data are collected “turn wise”:
 \[x = x_{\text{BPM1,turn1}}, x_{\text{BPM2,turn1}}, \ldots, x_{\text{BPM200,turn1}}, \ldots, x_{\text{BPM200,turn30}} \]
Multiple BPM analysis

- Window length of **30 turns**

- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.
Multiple BPM analysis

- Window length of **30 turns**

- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.
Multiple BPM analysis

- Window length of 30 turns

- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.
6D, $E = 6.5\text{TeV}$, $I_{\text{int}} = 510\text{A}$. Beam-beam ON, $\epsilon_n = 2.5\mu\text{m}$, $\beta^* = 40\text{cm}$, $q = 0$

$(Q_x, Q_y) = (62.31, 60.32)$, V_{RF} ON, $\delta_p = 27 \times 10^{-5}$, 99 angles, $0.1 - 6.1\sigma$ sliding NAFF

$f_r = 50\text{Hz}$, $A_r = 10^{-7}$ at MQXA.1, MQXA.3, MQXB.A2, MQXB.B2 of IP1, IP5
Weights in the distribution

- Each particle contributes its associated weight towards the bin count (instead of 1)

- \(P(a < x < b) = P(x < b) - P(x < a) \) according to the initial position in configuration space

- From Uniform to Gaussian: Particles at the core are more important than the ones in the tails
Weights in the distribution

5D, power supply ripple, frequency scan
- 1st sideband of the diagonal
- 1st sideband of the 3rd order
- 2nd sideband of the 3rd order

6D, chromaticity scan
Conclusions & future steps

Conclusions

- The additional resonance lines from power supply ripples and chromatic tune modulation have been identified with FMAs.
- We are able to show the coherent motion of the 6D footprint in the presence of chromaticity with the multiple-BPM instantaneous tune determination method.
- We showed the impact of different amplitudes and frequencies of the modulation from power supply ripples, from synchrotron motion and from the combination of both effects.

Future steps

- Investigate what is the impact of 6D BB in the modulation of the synchrotron motion.
- Simulations with distributions, in order to identify the impact of these effects in emittance growth, transportation of particles in the tails of the distribution and losses.
- Real LHC spectrum from power supply ripples.
Simplified model: NAFF - NAFF

- With a sliding window of 30 turns the frequency components can be identified.
- By frequency analyzing the NAFF results, the three components can be identified and separated:
 1) **DC component**, the un-modulated betatron tune with A_0
 2) f_s, the 1st sideband of the betatron tune with A_1 amplitude and φ_1 phase
 3) f_N, the frequency from the non-linear elements

$$Q_{\text{reconstructed}} = \sum_{t=1}^{t=L_{SW}} A_0 + A_1 e^{i(2\pi f_1 t + \varphi_1)}$$
Simplified model with FM & 6D Beam-beam

- Resonance conditions:

\[aQ_x + bQ_y + cQ_s = k \text{ for } a, b, c, k \text{ integers} \]

6D BB, crossing angle scan

![Graph](image-url)

Linear map, sextupole, octupole, 6D BB, VRF ON, 2000 turns, 4900 particles
\(E=6.5 \text{ TeV}, N_{\text{part}} = 2e11, \beta_s=40\text{cm}, \sigma_{\text{max}}=0.075, \phi=30.0 \ \mu\text{rad} \)

Sixtrack LHC