Power supply ripples & 6D Frequency Map Analysis

Sofia Kostoglou, Yannis Papaphilippou

Acknowledgments: H. Bartosik, R. De Maria, M. Fitterer, G. ladarola, D. Pellegrini, N.Triantafyllou

Introduction

- Previous studies: DA studies with power supply ripples for the HL-LHC triplet showed a sensitivity at 300 & 600 Hz *.
- The combination of non-linear resonances and modulation effects: degradation of dynamic aperture and beam lifetime.
- Transverse tune modulation: additional resonance sidebands, which can reach the footprint and cause particle diffusion.
- > Frequency Map Analysis in the presence of:
 - Power supply ripples
 - **II.** Synchrotron motion

^{* &}quot;BEAM DYNAMICS REQUIREMENTS FOR THE POWERING SCHEME OF THE HL-LHC TRIPLET", M. Fitterer, R. De Maria, S. Fartoukh and M. Giovannozzi

Modulation of the betatron tunes (I)

Power supply ripples:

Modulation in the current of a quadrupole's power supply

Change in magnetic field

Modulation of the normalized quadrupolar strength

Modulation of the betatron tunes (I)

Power supply ripples:

Modulation in the current of a quadrupole's power supply

Change in magnetic field

Modulation of the normalized quadrupolar strength

$$\Delta Q = \frac{1}{4\pi} \oint \beta(s) \Delta k(s) ds$$
 Instantaneous tune
$$Q_{inst} = Q_0 + \frac{1}{4\pi} \overline{\beta K_{depth}} \sin(2\pi Q_p n)$$
 Modulation depth
$$x(n) = x_0 \cos(2\pi Q_0 n) + \frac{\overline{\beta K_{depth}}}{4\pi Q_p} \sin(2\pi Q_p n))$$
 Modulation index

Modulation of the betatron tunes (II)

- Modulation from synchrotron motion:
- Chromaticity, synchrotron tune & Δp/p define the value of the modulation index.
- Large modulation index production of higher order harmonics.

Instantaneous tune

$$Q_{inst} = Q_0 + \frac{Q_x' \Delta p}{p} \sin(2\pi Q_s n)$$

Transverse motion- Linear approximation

$$x(n) = x_0 \cos \left(2\pi Q_0 n + \frac{\mathbf{Q}_x'}{\mathbf{Q}_s} \cdot \frac{\Delta \mathbf{p}_{\text{max}}}{\mathbf{p}} \sin(2\pi Q_s n) \right)$$

Modulation index

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\varphi(\omega)| = |\langle x(n), e^{-i\omega n} \rangle| = |\int e^{-i2\pi f n} \cdot \overline{x_h(n)} dn|$$

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\phi(\omega)| = |< x(n), e^{-i\omega n} > | = |\int e^{-i2\pi fn} \cdot \overline{x_h(n)} \, dn \, |$$

How easy is it to compute the tune of a modulated signal?

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\varphi(\omega)| = |\langle \mathbf{x}(\mathbf{n}), e^{-i\omega \mathbf{n}} \rangle| = |\int e^{-i2\pi f \mathbf{n}} \cdot \overline{\mathbf{x}_{\mathbf{h}}(\mathbf{n})} d\mathbf{n}|$$

Bessel functions of the first kind:

$$\mathbf{x}(\mathbf{n}) = \mathbf{x}_0 \cos(2\pi \mathbf{Q}_{\mathbf{x}} \mathbf{n} + \beta \sin(2\pi \mathbf{Q}_{\mathbf{m}} \mathbf{n})) = \mathbf{x}_0 \sum_{m=-\infty}^{\infty} J_{\mathbf{m}}(\beta) \cos(2\pi (\mathbf{Q}_{\mathbf{x}} + m \mathbf{Q}_{\mathbf{m}}) \mathbf{n})$$

- □ Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\phi(\omega)| = |< x(n), e^{-i\omega n} > | = |\int e^{-i2\pi fn} \cdot \overline{x_h(n)} \, dn \, |$$

Bessel functions of the first kind:

Amplitude of the Bessel function of the m order

Modulation index

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\phi(\omega)| = |< x(n), e^{-i\omega n} > | = |\int e^{-i2\pi f n} \cdot \overline{x_h(n)} \, dn \, |$$

Bessel functions of the first kind:

- Modulation frequency is constant
- Increase of modulation depth
- Modulation index increases
- Red line: analytical signal
- Black line: signal from tracking

- Linear map, octupolar kick, modulating quadrupole
- Fourier integral:

$$|\phi(\omega)| = |< x(n), e^{-i\omega n} > | = |\int e^{-i2\pi f n} \cdot \overline{x_h(n)} \, dn \, |$$

Bessel functions of the first kind:

- Modulation frequency decreases
- Modulation depth is constant
- Modulation index increases

LHC: Application of correction with Bessel functions

$$\beta = 1.32$$

Tools

- Sixtrack
- NAFF

Parameters

- ☐ 6D footprint
- ☐ 19 angles
- □ 0.1-6.1 σ
- □ $\delta p/p = 15e-5$
- **□** Q ' = 15
- \square $\beta^* = 40$ cm
- \square (Qx, Qy) = (62.31,60.32)
- \square xing = 150 μ rad

LHC: Application of correction with Bessel functions

Parameters

- ☐ 6D footprint
- ☐ 19 angles
- \Box 0.1-6.1 σ
- □ $\delta p/p = 27e-5$
- □ Q ' = 15
- \square (Qx, Qy) = (62.31,60.32)
- \Box xing = 150 µrad

 $\beta = 2.38$

6D, BB OFF, 19 angles, 0.1-6.1 σ,δp/p = 27e - 5, q=15 $\beta = 2.38$. Without correction 0.326

10/04/2018

Simplified model with FM: Phase space

Modulation frequency = ct

☐ Introduction of modulated
quadrupole ↑ Modulation depth,

□ For a <u>small modulation depth</u> the 1st sideband of the 6th order resonance starts to appear

□ For a <u>larger modulation depth</u> more particles are trapped inside the 1st sideband

Simplified model with FM: Phase space

- □ 6th order resonance excited from octupole Sideband?
- □ Introduction of modulated quadrupole ↑ Mod

↑ Modulation depth,
Modulation frequency = ct

Modulation depth = ct

- □ For a <u>small modulation depth</u> the 1st sideband of the 6th order resonance starts to appear
- ☐ For a <u>smaller modulation</u>

 <u>frequency</u> sidebands approach
 the main resonance & more
 sidebands start to appear

Simplified model with FM: Phase space

↑ Modulation depth,Modulation frequency = ct

Decoupled linear map & octupole, (Qx, Qy) = (0.34, 0.32), 100 particles, Ar = 1e - 06, Ts = 20.0 turns

↓ Modulation frequency,Modulation depth = ct

Distance between 1st sideband and main resonance is $\frac{2 \pm Q_s}{6}$

Simplified model with FM & 4D Beam-beam

- Resonance conditions:

$$aQ_x + bQ_y + cQ_m = k$$
 for a, b, c, k integers

4D BB, modulation depth scan from $\Delta Q=1e-6$ to $\Delta Q=5e-4$

Linear map, sextupole, octupole, 4D BB, modulating quadrupole, VRF OFF, 2000 turns, 1000 particles E=6.5 TeV, Npart = 2e11, beta_s=1, min_sigma_diff=1e-16, Ts=100.0 turns, DQ=1e-06

Simplified model with FM & 4D Beam-beam

- Resonance conditions:

$$aQ_x + bQ_y + cQ_m = k$$
 for a, b, c, k integers

4D BB, modulation frequency scan from Qm = 0.2 to Qm=0.05

Linear map, sextupole, octupole, 4D BB, modulating quadrupole, VRF OFF, 2000 turns, 4900 particles E=6.5 TeV, Npart = 2e11, beta s=40cm, Ts=5 turns

1st sideband of 3rd order resonance

- Quadrupoles of the **inner triplet** right and left **of IP1 and IP5**, **large beta-functions** increase the sensitivity to non-linear effects
- Resonance conditions:

$$aQ_x + bQ_y + c\frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for a, b, c, k integers}$$

- Quadrupoles of the **inner triplet** right and left **of IP1 and IP5**, **large beta-functions** increase the sensitivity to non-linear effects
- Resonance conditions:

$$aQ_x + bQ_y + c \frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for a, b, c, k integers}$$

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large betafunctions increase the sensitivity to non-linear effects
- Resonance conditions:

$$aQ_x + bQ_y + c \frac{f_{\text{modulation}}}{f_{\text{revolution}}} = k \text{ for a, b, c, k integers}$$

-By increasing the modulation depth, sidebands start to appear in the

footprints 5D, E = 6.5TeV, l_{ot} = 510A, Beam – beam ON, ε_n = 2.5μm, β' = 40cm, q = 15 $(Q_x, Q_y) = (62.31, 60.32), V_{BS} OFF, \delta p = 27e - 5, 49 angles, 0.1 - 6.1 \sigma, sliding NAFF$ f_r = 1124.5Hz, A_r = 1.0e - 7 at MQXA. 1, MQXA. 3, MQXB.A2, MQXB.B2 of IP1, IP5 Power supply ripples 0.3275

10/04/2018

☐ Scan of different ripple frequencies (50-900 Hz)

5D, E = 6.5TeV, I_{oct} = 510A, Beam – beam ON, ϵ_n = 2.5 μ m, β^* = 40cm, q = 15 (Q_x,Q_y) = (62.31, 60.32), V_{RF} OFF, δp = 27e – 5, 49 angles, 0.1 – 6.1 σ , sliding NAFF

6D studies

> Goal

Full dynamics of the beam along with synchrotron motion

> Difference

Coherent motion of the footprint due to synchro-betatron coupling

Tools

- Sixtrack for single particle tracking
 - II. NAFF

> Methods

Long term tracking: average picture of this motion in frequency space

►Instantaneous picture in the frequency domain → small number of turns & high sampling rate (accuracy)

√ Purpose of the study

√Frequency maps with a 30-turn window length and reasonable number of BPMs

Long term frequency maps with 1BPM per turn & power supply ripples

Setup & parameters

Parameters

- \Box E = 6.5 TeV \Box 6D Beam beam \Box $Q_s = 0.0017$

- $Q_x = 62.31$ $Q_v = 60.32$ $Q_v = 60.32$

Setup for 6D FMAs

1 BPM analysis at IP3

Multiple BPM analysis

- **200 virtual BPMs**
- Adjusted phase between BPMs around the ring to have cleaner spectra (discrepancies for particles at different amplitudes and energies)
- Tracking data are collected "turn wise":

$$\mathbf{x} = x_{\text{BPM1,turn1}}$$
, $x_{\text{BPM2,turn1}}$, ..., $x_{\text{BPM200,turn1}}$, ..., $x_{\text{BPM200,turn30}}$

Multiple BPM analysis

- Window length of 30 turns
- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.

Multiple BPM analysis

- Window length of 30 turns
- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.

Multiple BPM analysis

- Window length of 30 turns
- Before building the instantaneous footprints, the leakage from the resonance driving terms (high frequency modulation) needs to be removed.

6D FMAs with power supply ripples

6D, E = 6.5 TeV, I_{oct} = 510A, Beam – beam ON, $\epsilon_{\rm n} = 2.5 \mu {\rm m},~\beta^{\star} = 40 {\rm cm},~{\rm q} = 0$ (Q_x, Q_y) = (62.31, 60.32), V_{RF} ON, $\delta {\rm p} = 27~10^{-5},~99$ angles, 0.1 – 6.1 σ , sliding NAFF f_r = 50 Hz, A_r = 10⁻⁷ at MQXA.1, MQXA.3, MQXB.A2, MQXB.B2 of IP1, IP5

Weights in the distribution

- Each particle contributes its associated weight towards the bin count (instead of 1)
- P(a < x < b) = P(x < b) P(x < a) according to the initial position in configuration space
- ☐ From Uniform to Gaussian:
 Particles at the core are more important than the ones in the tails

Weights in the distribution

Conclusions & future steps

Conclusions

- □ The additional resonance lines from power supply ripples and chromatic tune modulation have been identified with FMAs.
- We are able to show the coherent motion of the 6D footprint in the presence of chromaticity with the multiple-BPM instantaneous tune determination method.
- We showed the impact of different amplitudes and frequencies of the modulation from power supply ripples, from synchrotron motion and from the combination of both effects

Future steps

- Investigate what is the impact of 6D BB in the modulation of the synchrotron motion
- Simulations with distributions, in order to identify the impact of these effects in emittance growth, transportation of particles in the tails of the distribution and losses.
- Real LHC spectrum from power supply ripples.

Backup

Backup

Simplified model: NAFF - NAFF

- With a sliding window of 30 turns the frequency components can be identified
- By frequency analyzing the NAFF results the three components can be identified and separated:
- 1) **DC component**, the un-modulated betatron tune with **A0**
- fs, the 1st sideband of the betatron tune with
 A1 amplitude and φ1 phase
- 3) **fN**, the frequency from the non-linear elements

$$Q_{reconstructed} = \sum_{t=1}^{t=L_{SW}} \mathbf{A_0} + \mathbf{A_1} e^{i(2\pi f_1 t + \phi_1)}$$

Simplified model with FM & 6D Beam-beam

- Resonance conditions:

$$aQ_x + bQ_y + cQ_s = k$$
 for a, b, c, k integers

6D BB, crossing angle scan

