

Iteration on length of high order correctors

E. Todesco, A. Musso H. Prin(CERN)

M. Sorbi M. Statera (INFN)

LAYOUT

Iteration on the corrector strength is needed

Summary of strength used in the baseline

Multipole	Intgrated gradient (T m)	(units)	Magnet length (m)
a_2	1.000	50	0.841
a_3, b_3	0.063	3	0.123
a_4, b_4	0.046	2.2	0.990
a_5, b_5	0.025	1.7	0.107
b_6	0.086	3.2	0.449
a_6	0.017	0.8	0.102

- Larger a₄, b₅, M. Giovannozzi team shows that we are at 87% of the nominal force for order 4 and 5
- Best estimates of field quality are based on 3 short models
 - We see large values of a4 and b5 about 2-3 times larger than our tables
- We shoud act now no time to have ore data from long models

LAYOUT

- Explored possibilities
 - https://indico.cern.ch/event/707076/ (February 2018)
 - 50% more current to get 30% more strength
 - Viable, but does not look as best option: much lower margin, and limited effect
 - 30% more length to get 50% more strength
 - Protection ok, 320 mm more in the cold mass if we also increase order 3
 - Decision by April, call for tender for series is being prepared (contract to be signed in January 2019)
 - Impact on costs is less than 5%, for the moment in the noise

- Where to find the 320 mm?
 - 120 mm found from optimization of the lay-out
 - Option of a shorter skew quadrupole
 - 200 mm less in the skew quad would mean correcting 35 units instead of 50
 - Iteration on the strength of the skew corrector is ongoing (WP2)
 - Today in the LHC we can correct up to 39 units, and we use the magnets at 40% of maximum current (we correct 16 units)

Decision to be taken soon (April): Lasa is writing the invitation to tender

	Corrector strength	(units at 17 mm) LHC	(units at 23 mm) LHC	(units at 50 mm) HL-LHC
	a_2	39	39	50
1050 950 E 850	b_3	1.1	1.5	3.0
## baseling	\mathbf{a}_2	1.8	2.5	3.0
550350 mi	a_4, b_4	0.8	1.5	2.2
350 250 -•-Serie6	a_5, b_5	-		1.7
100 150 200 Series Current [A]	b_6	0.8	2.8	3.2
HILUMI (CERN)	\mathbf{a}_{6}	-		0.8
III IIIO PRO ITOT				

A FURTHER POSSIBLE DEVELOPMENT

- The dependence on the current is highly non linear due to saturation
 - If we could work with 25 units correction (half of the strength of what we have today) this would open to door to have 120 A circuits, and no dump

