HH production at NNLO including M_t effects

Javier Mazzitelli

In collaboration with M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. Lindert

HH at NNLO with M_t effects

- We combined full NLO with HTL NNLO, fully differential predictions
- We studied different **reweightings** to account for **finite M**_t **effects** at NNLO
- Our best prediction: NNLO_{FTapprox}

We perform a subprocess-wise reweighting: for each n-loop squared amplitude

$$\mathcal{A}_{\mathrm{HEFT}}^{(n)}(ij \to HH + X)$$

we apply the reweighting

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

E.g. the squared amplitude:

is reweighted by:

- Amplitudes that are tree-level in the HTL are treated exactly (full double-reals)
- Great performance at NLO (4% difference with full NLO)

Total cross sections

\sqrt{s}	$13 \mathrm{TeV}$	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3 {}^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

- Increase with respect to NLO at 14TeV: ~12%
- About 8% smaller than YR4 recommendation
- Smaller scale and M_t uncertainties

- Proposal: update current total XS and M_t uncertainties recommendation to the NNLO_{FTapprox}
- For distributions rescale NLO+PS
 by NNLO_{FTapprox} total XS

M_t scheme uncertainty

- ullet Question raised in the HXSWG general meeting: M_t scheme dependence is not included in the previous uncertainties, and in principle can be large
- For our predictions we renormalize the top quark mass in the on-shell scheme
- Using the $\overline{\text{MS}}$ scheme is not possible at the moment (NLO two-loop virtuals available only for fixed M_t = 173GeV)

$$m_t(\mu) = M_t \left[1 - \frac{\alpha_S(\mu)}{\pi} \left(\frac{4}{3} + \log \frac{\mu^2}{M_t^2} \right) + \mathcal{O}(\alpha_S^2) \right]$$

$$\overline{\text{MS mass}} \quad \text{OS mass}$$

• As a first estimation we can replace the OS mass by the MS mass using the above relation for the LO cross section

Full NLO is expected to reduce this dependence

M_t scheme uncertainty

- We can use the FTapprox in order to estimate the scheme dependence at NLO
- Even more: even though we cannot compute the two-loop virtuals in the \overline{MS} scheme, we can replace the OS counterterm by the \overline{MS} one
- NLO_{FTapprox} total cross section in the MS scheme:
 - 2.7% (4.5%) smaller than the OS one for $\mu=M_t$ ($\mu=M_{hh}/2$)
- Scheme dependence reduced by about factor of 2 w.r.t. LO

This effect should probably be smaller using full NLO

Use this as an upper limit for scheme dependence

Some questions

- Is there a preferred choice for the \overline{MS} top quark mass scale?
- Assuming a 3% (5%) scheme dependence at NLO, what is the NNLO_{FTapprox} scheme uncertainty? ▲

Approximation to full NNLO in the OS scheme

Difference w.r.t. MS expected to be further reduced at NNLO ◀

• Should these uncertainties (scale, scheme and Mt uncertainties) be combined linearly?

Thanks!

NLO-improved approximation - NNLO_{NLO-i}

Done originally in Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk and Zirke, arXiv:1608.04798 [hep-ph]

Simplest approach: for **each bin** of each histogram we do

$$NNLO_{NLO-i} = NLO \times \left(\frac{NNLO}{NLO}\right)_{HEFT}$$

- Observable level reweighting, technically simple
- Finite M_t effects in the NNLO piece enter via the full NLO
- Has to be repeated for each observable and binning (bin size dependent!)
- We compute the total cross section based on the M_{hh} distribution

Born-projected approximation - NNLO_{B-proj}

Reweight each NNLO event by the ratio of the full and HEFT Born squared amplitudes

Different multiplicities (double real and real-virtual corrections)

Projection to Born kinematics needed

We make use of the q_T -recoil procedure:

Catani, de Florian, Ferrera and Grazzini, arXiv:1507.06937 [hep-ph]

- Momenta of the Higgs bosons remain unchanged
- The new initial state partons momenta absorb the q_T due to the additional radiation
- Initial state momenta remain massless, and their transverse component goes to zero when q_T goes to zero (and then q_T -cancellation is not spoiled)

Finite M_t effects entering only via the Born amplitude: no information about real radiation

Full-theory approximation - NNLO_{FTapprox}

- Double real corrections can be computed in the full theory (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

We perform a subprocess-wise reweighting: for each n-loop squared amplitude

$$\mathcal{A}_{\mathrm{HEFT}}^{(n)}(ij \to HH + X)$$

we apply the reweighting

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

- Same partonic subprocess used for reweighting: no need for a projection
- Amplitudes that are tree-level in the HEFT are treated exactly
- At NLO this agrees with the FTapprox in Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]
- Great performance at NLO (4% difference with full NLO) + full M_t dependence in double reals

Full-theory approximation - NNLO_{FTapprox}

- Double real corrections can be computed in the full theory (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

- Same partonic subprocess used for reweighting: no need for a projection
- Amplitudes that are tree-level in the HEFT are treated exactly
- At NLO this agrees with the FTapprox in Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]
- Great performance at NLO (4% difference with full NLO) + full M_t dependence in double reals

Our best NNLO prediction

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1{}^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	$\pm 3.1\%$
M_t unc. NNLO _{B-proj}	±14%	$\pm 15\%$	$\pm 20\%$	$\pm 36\%$

- At NLO the FTapprox overestimates full NLO by $4\% \longrightarrow 11\%$ for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

We can repeat the procedure for the Born-projected approximation

Compatible results even without the factor of 2

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.3%	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%
M_t unc. NNLO _{B-proj}	$\pm 14\%$	$\pm 15\%$	$\pm 20\%$	±36%

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.3%	±2.4%	$\pm 2.7\%$	±3.1%
M_t unc. NNLO _{B-proj}	±14%	±15%	±20%	±36%
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

Small difference for LHC, more conservative for larger energies

Some differential distributions

- NNLO_{B-proj} has wrong scaling in the tail
 No information about lowest order for p_{T,hh}
- NNLO PTapprox agrees with NNLO B-proj for low $p_{T,hh}$, and with NNLO NLO-i in the tail
- Distribution trivial at LO: NNLO is effectively NLO Large corrections and sizeable scale uncertainties