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Standard model of physics:

12 fundamental particles
3 forces / 4 gauge bosons
Higgs
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Standard model of physics:

12 fundamental particles
3 forces / 4 gauge bosons
Higgs

3 are neutrinos
Neutrinos are interesting!  Why?

original theory: neutrino mass = 0
but we know this is wrong!
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arXiv:0902.4656

>106 difference!
Neutrino masses 
are very small
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Neutrinos oscillate - their flavor states (e, m, t) are different than their mass states (1, 2, 3)

Connected by mixing matrix:

Mixing matrix mixing angles – 2 flavor case:
ne

nm

n1
n2

cos q sin q
-sin q cos q

3 flavor case:
Reactors; very recent!

3 angles and a CP-violation term determine the matrix: q12, q13, q23, dCP

𝑈𝑒1 𝑈𝑒2 𝑈𝑒3

𝑈μ1 𝑈μ2 𝑈μ3

𝑈τ1 𝑈τ2 𝑈τ3

U =
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P(nmnm) ≈ 1-sin2(2q23)sin2(1.27Dm2
32L/E)

L = baseline 
E of neutrino

experiment setup

Dm2
32 = m3

2 – m2
2 

also Dm2
21

(to be measured)

Neutrino mixing (UPMNS) analogous to 
quark mixing (UCKM) but much less diagonal

How well are angles measured so far? (PDG)

sin2(q12) = 0.307 +- 0.013
sin2(q23) = 0.51 +- 0.04 (‘maximal’? or which octant?)
sin2(q13) = 0.021 +- .0011

arXiv:1611.07770

𝑷𝜶→𝜷 = 𝝂𝜷(𝒕) 𝝂𝜶
𝟐 = σ𝒊𝑼𝜶𝒊

∗ 𝑼𝜷𝒊𝒆
−𝒊𝒎𝒊

𝟐𝑳/𝟐𝑬
𝟐
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Dm2
32 = Dm2

Atm

Dm2
21 

= Dm2
Solar

Dm2
21 = (7.53 +- 0.18) x 10-5 eV2

Dm2
32 = (2.45 +- 0.05) x 10-3 eV2

Two possible mass orderings 
(‘hierarchies’): ‘Normal’ and 
‘Inverted’.  Can’t tell which yet!

arXiv:1505.01891

When travelling through matter, 
there are additional oscillation 
effects as ne feels extra ‘drag’

The farther the path through matter 
the better we measure the hierarchy 
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Dm2
32 = Dm2

Atm

Dm2
21 

= Dm2
Solar

Things to be measured with 
neutrino oscillation experiments:

q12, q13, q23

Dm2
32, Dm2

21, mass hierarchy
dCP (is CP violated by neutrinos?)

arXiv:1505.01891
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Dm2
32 = Dm2

Atm

Dm2
21 

= Dm2
Solar

Things to be measured with 
neutrino oscillation experiments:

q12, q13, q23

Dm2
32, Dm2

21, mass hierarchy
dCP (is CP violated by neutrinos?)

Long-baseline n oscillation 
experiments can measure 
these especially well

arXiv:1505.01891



Why does it matter?

• Fundamental properties of neutrinos affect lots of other things:
• Cosmology, astrophysics

Why is universe matter and not anti-matter?  sin(dCP)≠ 0  leptogenesis?

• Phenomenology, GUTs

Are neutrinos their own anti-particle (Majorana)? 0nbb, see-saw mechanism

• Can also measure neutrinos to learn about interesting sources
• supernova neutrinos

• sterile neutrinos

• solar, cosmic ray neutrinos
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Detectors used in long-baseline 
experiments can do this too



A long-baseline experiment: NOvA
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First, make a neutrino beam:
(almost pure nm)

810 km

Then shoot it at your detectors:

A Near Detector (ND) near the 
beam, before oscillations

And a Far Detector (FD) far away FD
ND

NuMI beam @ FNAL

NND(En) = φ(En) x σ(En) x ε(En)
NFD(En) = φ(En) x σ(En) x ε(En) x P(En) …

ND helps constrain FD uncertainties

Earth
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FD (at Ash River, MN, 810 km baseline):
16m x 16m x 60m, 14kton, on surface (some barite overburden)
~2/3 liquid scintillator by mass, ~344,000 cells, 896 planes
low-Z, finely-segmented, 62% active
1 radiation length ~ 6-10 cells

ND (@ FNAL, 1km from NuMI target):
4m x 4m x 16m, 0.3kton, underground
~20,000 cells, design similar to FD

NOvA
detectors



Neutrino interactions
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Charged current:
nx + nucleon  x + hadrons
x = e, m, t
hadrons: can be single p (QE)

can be shower (p, p, …)

hadrons hadrons

Neutral current:
n + nucleon  n + hadrons
flavor blind
no lepton
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nm disappearance

P(nmnm)  1 - sin2(2q23)sin2(1.27Dm2
32L/En)

directly measure q23 and Dm2
32

Dm2
32 q23

signature: muon
backgrounds:
neutral current 
- p, p can look like muons
cosmic rays 
- surface detector, real muons



550 𝜇s exposure of the Far Detector

15

top

+ side

bottom

- side

beam direction
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Time-zoom on 10 𝜇s interval during NuMI beam pulse
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CVN - disappearance
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CVN - appearance
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can reconstruct the event
(ND + FD)

FD: ~106 events
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containment
(ND + FD)

FD: ~103 events
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is it a nm CC?
deep learning: CVN
removes NC, cosmics
(ND + FD)

FD: ~100 events
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BDT to remove
remaining cosmics
(FD only)

FD: ~100 events

shape depends on
oscillation parameters
q23 and Dm2

32



nm energy reconstruction
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Reconstructed neutrino E:
based on simulation
lepton part (𝑬𝒍𝒆𝒑

𝒓𝒆𝒔 = 3%)

hadronic part (𝑬𝒉𝒂𝒅
𝒓𝒆𝒔 = 30%)

En = Elep + Ehad (𝑬ν
𝒓𝒆𝒔 = 9%)
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the less hadronic E the 
better the E resolution
divide into 4 Ehad/En quantiles

tiny background
Eres=6%

large background
Eres=12%
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select nm events in ND
data/MC agreement good
tells us simulation not too wrong
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Use ND as a measurement to 
constrain uncertainties in the FD
Far/near extrapolation
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if no oscillations, predict 763 events
observe 126 events

Each systematic is a penalty term in
c2 fit to determine oscillation parameters
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Can plot as 90% confidence 
contour in q23, Dm2

32 space

best fits:

sin2q23 = 0.558+.041
-.033

Dm2
32 = 2.444+.079

-0.077 x 103 eV2
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ne Appearance

directly measure dCP, the mass hierarchy, additional information for q23

Kirk Bays, SLAC seminar
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ne Appearance

Signature is an electron shower

Backgrounds:
- cosmics
- neutral current
- intrinsic beam ne

Use ND to measure intrinsic ne

and neutral current background, 
extrapolate to FD

Kirk Bays, SLAC seminar
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bin in energy for three PID bins + sideband



4/3/2018 Kirk Bays, SLAC seminar 32

real data + best fit
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Contours in q23, dCP space
Depends a lot on mass hierarchy
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Contours in q23, dCP space
Depends a lot on mass hierarchy

For IH, dCP 0-p is disfavored by > 3 s!
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biggest uncertainty for appearance is cross-sections
still statistics limited but getting close

second biggest uncertainty for disappearance
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cross-sections are hard!  Lots of uncertainty
three standard interaction types:
Quasi-Elastic: just lepton and proton
Resonance: hadronic system is resonance (ie delta) which decays
Deep Inelastic Scattering: neutrino hits quark directly
Meson Exchange Currents: only recently discovered

still tons of uncertainty to rate and shape
NOvA is measuring this!  Important for not just NOvA!
DUNE: current x-sec systs: ~10% needed: ~1%

2nd analysis 2nd analysis



Other NOvA physics
• Sterile neutrinos: Phys. Rev. D 96, 072006

• CVN classifier: JINST 11 (2016) no. 09, P09001

• Direct x-section measurements
• NC coherent p0

• nm CC p0 inclusive

• Dark matter searches

• Magnetic monopoles

• Supernova physics

• … and much more
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in paper draft
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Thank you!

NOvA Collaboration



Backups
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Data
MC 𝜋0 signal
MC bkgd

Data 𝜇: 134.2 ± 2.9 MeV
Data 𝜎:   50.9 ± 2.1 MeV

MC 𝜇:   136.3 ± 0.6 MeV
MC 𝜎:     47.0 ± 0.7 MeV

NOvA Calibration:
• Critical for any detector.  Very briefly:

• Absolute energy scale is calibrated with stopping 
muons (dE/dx, Bethe-Bloch)

• Biggest cell by cell effect: attenuation in WLS fiber

• Check energy scales with cosmics, beam events, 
Michels, p0 mass/hadronic showers in ND data (all 
agree to  ~5%)
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NOvA Reconstruction Basics:
• Slicing: cluster hits is space and time to isolate physics 

interactions; highly accurate, can distinguish between > 50 FD 
muons in the 550 ms spill window with almost no overlap
• timing resolutions: FD ~ 150ns, ND ~ 50ns

• Tracking: for muons especially, also protons and pions
(disappearance).  Use a Kalman Filter inspired algorithm

• Vertexing: for showers, hadronics: track lines of energy 
deposition back to a single start point (appearance)

tracking example

m-

vertexing example
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• This entire procedure is re-done beginning 
to end for each combination of oscillation 
parameters or systematics being tested

• The extrapolation provides a data-driven 
approach to help fix any simulation errors
and constrain uncertainties

• It is not perfect though – it deals 
well with normalization effects, but 
poorly with large energy shifts

• Thus it is also important to make the 
simulation as accurate as possible

4/3/2018 Kirk Bays, SLAC seminar
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NuMI beam most powerful neutrino beam in the world
Recent upgrades, up to goal of 700 kW
NOvA recently released third set of oscillation results

- based on 8.85 x 1020 POT
All neutrino mode running, anti-neutrino data analyses ongoing
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From 2.6  0.8 s exclusion of max mixing

new light model (include Cherenkov light)
this changes E resolution (7%  9%) and 
shifts hadronic E (~70 MeV on average), 
which coincidentally pushes 3 events 
across bin boundaries (expected: 0.5)

New analysis techniques – energy 
resolution binning separates out poor 
resolution events that may be background; 
removes impact of possible background 
fluctuation


