Measuring the Rate of Isotropization of Quark-Gluon Plasma Using Rapidity Correlations

Krakow, Poland, 8 January 2019

George Moschelli Sean Gavin Christopher Zin Lawrence Technological University Wayne State University Wayne State University

Fluctuations in Nuclear Collisions

Damping of transverse flow fluctuations can be used to measure viscosity.

Gavin & Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302

Rapidity dependence of flow fluctuations can measure relaxation time.

Gavin, GM, Zin, Phys. Rev. C94 (2016) no.2, 024921

Fluctuations from Equilibrium

Momentum in Fluctuating Hydrodynamics

• Momentum current – small fluctuations $M_i \equiv T_{0i} - \langle T_{0i} \rangle$

• Momentum conservation linearized Navier-Stokes

$$\frac{\partial M_i}{\partial t} + \nabla_i p = \frac{\eta/3 + \zeta}{sT} \nabla_i \left(\vec{\nabla} \cdot \vec{M} \right) + \frac{\eta}{sT} \nabla^2 M_i$$

- Helmholtz decomposition $ec{M} = ec{g} + ec{h}$
- "longitudinal" mode (curl free part) $ec{
 abla} imesec{h}=0$
- "transverse" mode (divergence free part) $\vec{\nabla} \cdot \vec{g} = 0$

The Shear Mode and Noise

• Momentum conservation linearized Navier-Stokes

$$\partial_i M_i + \nabla_i p = \frac{\eta/3 + \zeta}{sT} \nabla_i \left(\vec{\nabla} \cdot \vec{M} \right) + \frac{\eta}{sT} \nabla^2 M_i$$

$$\vec{\nabla} \times (\star) \rightarrow \qquad \partial_t \vec{g} = \nu \nabla^2 \vec{g}$$

• kinematic viscosity $\nu = \eta/Ts$

Dissipative parts modified by noise

$$T_{ji}^{diss} \approx -\nu \nabla_j \mathbf{g}_i + \mathbf{noise}$$

People are working on this problem in general. See: Akamatsu, Mazeliauskas, Teaney, Ohnishi, Kitazawa, Asakawa, Stephanov, Kapusta, Mueller, Plumberg, Pratt, Young, Schlichting

$$\partial_t g_i = \nu \nabla^2 (g_i + noise)$$

Comparing Changes in Fluctuations with Position

Fluctuations from Noise

Diffusion of Momentum Correlations

Momentum flux density correlation function

 $r = \langle g_r(x_1)g_r(x_2) \rangle - \langle g_r(x_1) \rangle \langle g_r(x_2) \rangle$

• The difference $\Delta r = r - r_{eq}$ still satisfies a diffusion equation

Gardiner, Handbook of Stochastic Methods, (Springer, 2002)

$$\left(\frac{\partial}{\partial \tau} - \frac{\nu}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right) \Delta r = 0$$

• fluctuations diffuse through volume, driving $r
ightarrow r_{eq}$

width in relative spatial rapidity grows from initial value σ_0

Measuring Correlations

Momentum flux density correlation function

$$r = \langle g_r(x_1)g_r(x_2) \rangle - \langle g_r(x_1) \rangle \langle g_r(x_2) \rangle$$

• The difference $\Delta r = r - r_{eq}$ still satisfies a diffusion equation

Gardiner, Handbook of Stochastic Methods, (Springer, 2002)

$$\left(\frac{\partial}{\partial \tau} - \frac{\nu}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right) \Delta r = 0$$

• observable:
$$C = \frac{1}{\langle N \rangle^2} \left(\sum_{pairs} p_{ti} p_{tj} \right) - \langle p_t \rangle^2 = \frac{1}{\langle N \rangle^2} \int \Delta r \, dx_1 \, dx_2$$

assumptions:

1) only "transverse" shear modes
 2) proper-time freeze out

Abdel-Aziz & Gavin., PRL 97 (2006) 162302; PR C70 (2004) 034905 Pratt, Schlichting, Gavin, Phys. Rev. C 84 (2011) 024909

Measuring Correlations

STAR Phys.Lett. B704 (2011) 467-473 arXiv:1106.4334

measured: rapidity width of near side peak

- fit peak + constant offset
- offset is ridge, i.e., long range rapidity correlations
- report RMS width of the peak

• find: width increases in central collisions

 $\sigma_{central} = 1.0 \pm 0.2$

$$\sigma_{peripheral} = 0.54 \pm 0.02$$

First Order Diffusion

 $\eta/s = 1/4\pi$ $\nu = \frac{\eta}{T_F s} = constant$ $T_F = 143 \ MeV$ $\tau_0 = 0.6 \ fm$ $\tau_{F,central} = 10 \ fm$

RMS

0.9

0.8

0.7

0.6

0.5

0.4[∟]0

50

100

150

200

250

b

$$\left[\frac{\tau_{\pi}}{2}\frac{\partial^{2}}{\partial\tau^{2}} + \left(1 + \frac{\kappa\tau_{\pi}}{\tau}\right)\frac{\partial}{\partial\tau} - \frac{\nu}{\tau^{2}}\left(\frac{\partial^{2}}{\partial\eta_{1}^{2}} + \frac{\partial^{2}}{\partial\eta_{2}^{2}}\right)\right]\Delta r = 0$$

$$\left[\frac{\partial}{\partial \tau} - \frac{\nu}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right] \Delta r = 0$$

Diffusion Equation

Diffusion (1st Order)

- Gaussian peak spreads
- tails violate causality

$$\left[\frac{\tau_{\pi}}{2}\frac{\partial^{2}}{\partial\tau^{2}}\right]\Delta r = 0$$

Wave Equation

Wave propagation

- peak splits into left and right traveling pulses
- propagation speed c_s

$$\left[\frac{\tau_{\pi}}{2}\frac{\partial^{2}}{\partial\tau^{2}} + \left(1 + \frac{\kappa\tau_{\pi}}{\tau}\right)\frac{\partial}{\partial\tau} - \frac{\nu}{\tau^{2}}\left(\frac{\partial^{2}}{\partial\eta_{1}^{2}} + \frac{\partial^{2}}{\partial\eta_{2}^{2}}\right)\right]\Delta r = 0$$

Relaxation Time $\tau_{\pi} = \beta v$

- $\beta = 0$, diffusion only, waves move at infinite speed
- $\beta = 5$, predicted by kinetic theory of gas of massless particles
- Larger β means slower wave \rightarrow slower changes in fluctuation correlations

The Effect of au_{π}

$$\left[\frac{\tau_{\pi}}{2}\frac{\partial^{2}}{\partial\tau^{2}} + \left(1 + \frac{\kappa\tau_{\pi}}{\tau}\right)\frac{\partial}{\partial\tau} - \frac{\nu}{\tau^{2}}\left(2\frac{\partial^{2}}{\partial\Delta\eta^{2}} + \frac{1}{2}\frac{\partial^{2}}{\partial\eta^{2}_{a}}\right)\right]\Delta r = 0$$

Comparison to Experiment

$$\left[\frac{\tau_{\pi}}{2}\frac{\partial^{2}}{\partial\tau^{2}} + \left(1 + \frac{\kappa\tau_{\pi}}{\tau}\right)\frac{\partial}{\partial\tau} - \frac{\nu}{\tau^{2}}\left(2\frac{\partial^{2}}{\partial\Delta\eta^{2}} + \frac{1}{2}\frac{\partial^{2}}{\partial\eta^{2}_{a}}\right)\right]\Delta r = 0$$

Wave and Diffusion Competition

- For constant viscosity and $\kappa = 0$ every centrality follows the same time evolution
- Wave effects happen early and rapidly, diffusion influences show up later
- For this specific set of calculation conditions 20-30% collisions freeze out near the maximum (visible) effect of the wave behavior

Evolving Parameters

 Entropy production due to viscous heating and longitudinal expansion.

 $\frac{ds}{d\tau} + \frac{s}{\tau} = \frac{\Phi}{T\tau}$

• Relaxation equation. Causality delays heating.

$$\frac{d\Phi}{d\tau} = -\frac{1}{\tau_{\pi}} \left(\Phi - \frac{4\eta}{3\tau} \right) - \frac{\kappa}{\tau} \Phi$$

 Coefficient associated with the gradient of speeds of fluid cells

$$\kappa = \frac{1}{2} \left\{ 1 + \frac{d \ln(\tau_{\pi}/\eta T)}{d \ln \tau} \right\}$$

 η/s parameterization follows Phys. Rev. C86 (2012) 014909

Evolving Parameters

$$\kappa = \frac{1}{2} \left\{ 1 + \frac{d \ln(\tau_{\pi}/\eta T)}{d \ln \tau} \right\}$$

 $T_F = 150 MeV$

 $\tau_0 = 1.05\,fm$

 $\tau_{F,central} = 12.5 fm$

Width and Kurtosis

Realistic Limits on $\beta = \tau_{\pi}/\nu$

Summary

Hydro formulation: only transverse modes effect these correlations

- Wavelike propagation of fluctuations important at early times
- Diffusive effects show up as waves attenuate and separate

Causality shapes the rapidity dependence of correlations

$$au_{\pi} = oldsymbol{eta} oldsymbol{
u} o ext{double humps}$$
 $u = rac{\eta}{Ts} o ext{width}$

Open Questions

- Influence of sound and heat modes on observables
- Charge balancing, resonances, jets, HBT

Kurtosis with Evolving Parameters

What the Experiment Can Show Us

Data from the STAR Collaboration, Phys.Lett. B704 (2011) 467

What the Experiment Can Show Us

Data from the STAR Collaboration, Phys.Lett. B704 (2011) 467

The stress energy tensor relaxes due to shear viscous forces. In second order hydrodynamics (we will keep only shear contributions)

 $D = u^{\mu} \partial_{\mu}$

Here we require $\partial_{\mu} \left(T^{\mu i}_{ideal} + \Pi^{\mu i} \right) = 0$ leading to Israel-Stewart equations.

Schematically $\frac{\partial}{\partial t}\Pi^{\mu i} \sim -\frac{1}{\tau_{\pi}}(\Pi^{\mu\nu} - S^{\mu\nu})$