Summary of Recent Results for Quarkonia Production in pp, pPb, PbPb with CMS

Dong Ho Moon On behalf of CMS collaboration (Chonnam National University, Korea)

2019/01/10 XXV EPIPHANY @ Crocow, Poland

Quarkonia in Heavy ion Collisions

- Quarkonia : Excellent Probe for the Quark-Gluon-Plasma
 - Produced by hard scattering in the early stage of collisions
 - $\tau_{\text{formation}}(q\bar{q}) \le \tau_{\text{formation}}(QGP) < \tau_{\text{life time}}(QGP) < \tau_{\text{decay time}}(q\bar{q})$ \implies expected to experience whole QGP evolution

Quarkonia in Heavy ion Collisions

- Quarkonia productions in heavy ion collisions are affected by
 - Color Screening : melting depending on different temperatures and binding energies
 - Sequential Melting
 - Parton energy loss in medium
 - Cold Nuclear Matter (CNM) Effects : • Nuclear PDFs, multiple scattering, comover break-up.. Etc
 - **Statistical Regeneration**

 $T > T_{diss}$

QWG 2017 R. Arnaldi

Quarkonia in Heavy ion Collisions

- Color Screening : melting depending on different temperatures and binding energies
 - Sequential Melting
- Parton energy loss in medium
- Cold Nuclear Matter (CNM) Effects : Nuclear PDFs, multiple scattering, comover break-up.. Etc
- Statistical Regeneration

Reminder from Run

EPJC 77 (2017) 252 PRL 109 (2012) 222301

Reminder from Run

EPJC 77 (2017) 252 PRL 109 (2012) 222301

CMS Detector & Muon Reconstruction

Charmonia in pPb & PbPb

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 23:00:35.173312 GMT Run / Event / LS: 326392 / 3003879 / 56

J/ψ : Signal Extraction

J/ψ : Signal Extraction

J/ψ : Signal Extraction

 $R_{AA} = \frac{\text{Yield}_{AA}}{\langle N_{Coll} \rangle}$

arXiv:1712.08959

- Very similar suppression : no strong dependence on collision energy but slightly more suppressed in most central events at higher collision energy
 - R_{AA} (0-5 %) : ~20% more suppressed
 - 5.02 TeV : 0.219 \pm 0.005 (stat.) \pm 0.013 (syst.)
 - 2.76 TeV : 0.282 \pm 0.010 (stat.) \pm 0.023 (syst.)
 - No strong rapidity dependence and but increasing p_T dependence slightly

 At high p_T, no strong collision energy dependence

- Decrease suppression at higher p_T
- Similar trend of p_T depending on centrality (increasing trend at high p_T)

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

11

 $\text{Yield}_{AA}/\langle N_{\text{Coll}} \rangle$

Yield,

 $R_{AA} =$

 At high p_T, no strong collision energy dependence

- Decrease suppression at higher p_T
- Similar trend of p_T depending on centrality (increasing trend at high p_T)
- Less suppressed at high p_T : more energy loss contribution ?
 - Similar to D meson and charged hadron

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

11

 $\text{Yield}_{AA}/\langle N_{\text{Coll}}\rangle$

Yield.

 $R_{AA} =$

- At high p_T, no strong collision energy dependence
- Decrease suppression at higher p_T
- Similar trend of p_T depending on centrality (increasing trend at high p_T)
- Less suppressed at high p_T : more energy loss contribution ?
 - Similar to D meson and charged hadron

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

11

 $\text{Yield}_{AA}/\langle N_{\text{Coll}}\rangle$

Yield.

 $R_{AA} =$

- At high p_T, no strong collision energy dependence
- Decrease suppression at higher p_T
- Similar trend of p_T depending on centrality (increasing trend at high p_T)

 $\text{Yield}_{AA}/\langle N_{\text{Coll}}\rangle$

Yield

11

 $R_{AA} =$

- Less suppressed at high p_T : more energy loss contribution ?
 - Similar to D meson and charged hadron
 - Agreed with ATLAS (energy loss vs color screening at high p_T ?)

Prompt ψ(2S) : Double Ratio

- $\psi(2S)$ more suppressed than J/ψ : sequential melting
- No significant dependence on p_T
- Hint for a different behavior with energy
- X. Du and R. Rapp: $\psi(2S)$ regenerated later than J/ ψ in the fireball evolution

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

2.5

3.5

m_{u+u} (GeV/c²)

Prompt ψ(2S) : Double Ratio

Double Ratio (DR) = $\frac{[\psi(2S)/J/\psi]_{PbPb}}{[\psi(2S)/J/\psi]_{pp}} = \frac{R_{AA}(\psi(2S))}{R_{AA}(J/\psi)}$

- Good agreement with CMS and ALICE but slightly different observation in ATLAS (increasing at most central collisions but theory couldn't follow)
- 2018 Data will be helpful to understand what is going on
- No significant dependence on p_T
- Hint for a different behavior with energy
- X. Du and R. Rapp: $\psi(2S)$ regenerated later than J/ ψ in the fireball evolution

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Prompt J/ψ in pPb

Strong forward and lower p_T region suppression

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Prompt J/ψ in pPb

- Prompt J/ ψ R_{pPb} above unity in most bin : anti-shadowing ?
 - Slightly more enhancement in backward (Pb going side)
 - More enhancement in high p_T
- nPDF calculations slightly lower than data

Prompt ψ(2S) in pPb

arXiv:1805.0248

- Expecting to see similar effects from nPDF for J/ ψ and ψ (2S)
- Hint for a different modification in the data (in Pb going direction)
- Is the more fragile $\psi(2S)$ affected by final state effect ?

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Prompt ψ(2S) in pPb

- Complicated results : ALICE, LHCb showed same results but backward suppression in CMS and forward suppression in ATLAS.
- Not possible to get strong conclusion due to the large error bar, 2018 data will give us more clear conclusion.

Bottomonia in PbPb

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Y(1S, 2S, 3S) at 5.02 TeV : R_{AA}

arXiv:1805.09215

- Increasing suppression along the centralities
- 'Clear' ordering : $R_{AA}(\Upsilon(3S)) < R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Also hydrodynamic model with 3 temperatures (Krouppa & Strickland) describe well data within uncertainty $(4\pi\eta/s = \{1, 2, 3\}, T_0 = \{641, 632, 629\}$ MeV)

arXiv:1805.09215

- Increasing suppression along the centralities
- 'Clear' ordering : $R_{AA}(\Upsilon(3S)) < R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Also hydrodynamic model with 3 temperatures (Krouppa & Strickland) describe well data within uncertainty $(4\pi\eta/s = \{1, 2, 3\}, T_0 = \{641, 632, 629\}$ MeV)
- Complete melting of 3S
 - 3S yet to be seen in PbPb collisions at the LHC (maybe in 2018 data?)

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Energy Dependence of Y(1S) : R_{AA}

arXiv:1805.09215

- Indication of larger suppression of $\Upsilon(1S)$ at higher collision energy
- No significant dependence on rapidity but hint of more suppression in low $p_{\rm T}$ region at 5.02 TeV than 2.76 TeV

Energy Dependence of Y(1S, 2S, 3S) : R_{AA}

arXiv:1805.09215

- Indication of larger suppression of $\Upsilon(1S)$ at higher collision energy
- No significant dependence on rapidity but hint of more suppression in low $p_{\rm T}$ region at 5.02 TeV than 2.76 TeV
- Stricklaland Thermal anisotropic hydrodynamical model reproduce ALICE results within uncertainties but tension in forward rapidity (increasing or decreasing)

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

CMS

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-10 02:06:52,131328 GMT Run / Event / LS: 326483 / 8874092 / 36

J/w Elliptic flow in PbPb

- Indication of non-zero flow (2.7σ) at 2.76 TeV
- Evidence for non-zero flow (7 σ) in p_T 4-6 GeV/c at 5.02 TeV

J/w Elliptic flow in PbPb

- Available precise measurements in low $p_{\rm T}$ at ALICE and in high $p_{\rm T}$ at CMS
- Clear p_T dependence in low p_T and still non-zero flow in high p_T
- Interpretation : thermalized charm quark inherited to J/ψ in low p_T (hint of regeneration) but path-length dependence in high p_T .

J/ψ Elliptic flow in pPb

CMS-PAS-HIN-18-010

- Observed significant positive $J/\psi v_2$ even in pPb
- Measured in events with N^{trk} > 185 (only in high multiplicity events)
- Don't understand yet exactly but can imagine that D and prompt J/ψ should have same reason

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Summary

Chamoina in pPb & PbPb

- Strong suppression along with centralities
- Energy loss would be more dominant in high p_T region than color screening
- $\psi(2S)$ is more suppressed than J/ ψ at backward rapidity in pPb but not sure exact reason, yet

Bottomonia in PbPb

- Observed sequential suppression as expected
- Indication of larger suppression of Y(1S) at 5.02 TeV than 2.76 TeV
- Still no sign of Y(3S), yet

Elliptic flow for J/ψ

- Observed non-zero flow in PbPb and even in pPb
- No significant dependence on collision energy
- Similar size of v_2 observed in pPb and PbPb

26

CMS

Outlook

- PbPb Data taking in 2018 at 5.02 TeV
 - 1.7 nb⁻¹ : ~ 4 x 2015 PbPb data, ~ 10 x 2011 PbPb data
- Exciting results are coming soon !!! Please stay tuned.

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Thank You Very Much for your attention !

Back Up

What is "Quarkonia" ?

- Quarkonia : plural of quarkonium (heavy flavor quarks : c, b)
 - Charmonia : bound state of charm and anti-charm (J/ ψ , ψ '(2S), χ_c (1P) ...)
 - Bottomonia : bound state of bottom and anti-bottom (Y(1S, 2S, 3S), $\chi_b(1P)$...)

Sequential Melting

Sequential Melting

Quarkonia Acceptance

Complimentary acceptance for LHC detectors

J/w Mass Distributions at LHC

CMS Prompt Charmonia

PRL 0118 (2017) no.16, 162301

Simultaneous two dimensional fit method

- Mass + pseudo-proper decay length
- For $\psi(2S)$, extra cut applied for rejecting non-prompt components using a cut on $I_{J/\psi}$ due to small S/B
- Data-driven correction for the non-prompt contamination in the low $I_{J/\psi}$ region

ATLAS Prompt Charmonia

arXiv:1805.04077

Double Ratio (DR) = $\frac{[\psi(2S)/J/\psi]_{PbPb}}{[\psi(2S)/J/\psi]_{pp}} = \frac{R_{AA}(\psi(2S))}{R_{AA}(J/\psi)}$

- DR is under unity : strong suppression of ψ(2S) with respect to J/ψ (sequential melting)
- Slightly increasing trend along increasing centrality
- Superimposing model results data is well described under different scenarios
 - Sequential Melting + Color Regeneration
 - Energy loss
 - Tension in most central events

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

ALICE J/ψ in pPb

Backward

Forward

$$R_{\rm pPb} = \frac{1}{208} \frac{\sigma^{pp}}{\sigma^{pp}}$$

- Strong modifications at forward rapidity
- p_T dependence : gradually approaching to unity (starting from 0.6 of R_{pPb})
- nPDF, energy loss and CGC models describe well data within uncertainties

Y Mass Distributions at LHC

PLB 740 (2015) 105

ATLAS-CONF-2015-050

Summary

• In pPb

- Indication of initial suppression for all of quarkonia
- More suppression at forward rapidity and low p_T region
- $\psi(2S)$ is more suppressed than J/ ψ at backward rapidity but not sure exact reason

• In PbPb

- Observed sequential suppression as expected
- Indication of larger suppression of $\Upsilon(1S)$ at 5.02 TeV than 2.76 TeV in CMS but slightly opposite trend is observed in ALICE
- Still no sign of Y(3S)

ATLAS Prompt ψ(2S) in pPb

- $\psi(2S)$ is more suppressed than J/ ψ (maybe same reason with CMS?)
- Slightly more suppression at forward rapidity and in more central events
- But still big error bar (need more statistics)
- Similar increasing trend in more central events at both of PbPb and pPb (is this effect from CNM ? not from QGP ?)

10 (%) 8 Nof of of other series of the ser

- Almost zero flow at RHIC
- But significant elliptic flow (v₂) may be expected at LHC energ y due to the significant contribut ion of regenerated J/ψ
 - Good regeneration signal

arXiv:1709.05260

- Similar flow observed for open charm
 - Charm quarks strongly interact with medium
 - Comparison between J/ψ and D meson flow can provide insights on the properties of flow of heavy vs light quarks
 - At low p_T : light quark \approx c+light quark > c+c quark
 - At high p_T : light quark ≈ c+light quark ≈ c+c quark
 A v EFIFTIAN I @ Cracow, 2019/01/10, Dong no Moon

arXiv:1709.05260

- Similar flow observed for open charm
 - Charm quarks strongly interact with medium
 - Comparison between J/ ψ and D meson flow can provide insights on the properties of flow of heavy vs light quarks
- ATLAS measured prompt and nonprompt J/ψ's flow at 5.02 TeV
 - Prompt J/ψ's flow is larger than nonprompt J/ψ's one
 - AAV EFIFIAN I @ CIACOW, 2019/01/10, Dong no woon

arXiv:1709.06807, 1709.05260

- Non-zero v_2 in $p_T > 3$ GeV/c
- No significant collision system dependence
- Similar size of v₂ in PbPb

J/w Elliptic flow in pPb

CMS-PAS-HIN-18-010

- Observed significant positive $J/\psi v_2$ even in pPb
- Measured in events with N^{trk} > 185 (only in high multiplicity events)

Y(1S, 2S, 3S) at 5.02 TeV : R_{AA}

arXiv:1805.09215

- Increasing suppression along the centralities
- 'Clear' ordering : $R_{AA}(\Upsilon(3S)) < R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Also hydrodynamic model with 3 temperatures (Krouppa at al.) describe well data within uncertainty $(4\pi\eta/s = \{1, 2, 3\}, T_0 = \{641, 632, 629\}$ MeV)
- When interpreting this, don't forget the CNM effects as seen in pPb results.

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon

Energy Dependence of Y(1S, 2S, 3S) : R_{AA}

arXiv:1805.09215

- Indication of larger suppression of $\Upsilon(1S)$ at higher collision energy
- No significant dependence on rapidity but hint of more suppression in low $p_{\rm T}$ region at 5.02 TeV than 2.76 TeV
- Stricklaland Thermal anisotropic hydrodynamical model reproduce ALICE results within uncertainties but tension in forward rapidity (increasing or decreasing)

XXV EPIPHANY @ Cracow, 2019/01/10, Dong Ho Moon