The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	000000	00000	00000	000000

Exclusive diffractive processes in high energy *eA* collisions

Renaud Boussarie

Brookhaven National Laboratory

Cracow Epiphany Conference 2019, January 2019

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
●000000	000000	00000	00000	000000

The shockwave description of the Color Glass Condensate

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
○●○○○○○	000000	00000	00000	000000

Kinematics

$$p_{1} = p^{+} n_{1} - \frac{Q^{2}}{2s} n_{2}$$

$$p_{2} = \frac{m_{t}^{2}}{2p_{2}^{-}} n_{1} + p_{2}^{-} n_{2}$$

$$p^{+} \sim p_{2}^{-} \sim \sqrt{\frac{s}{2}}$$

Lightcone (Sudakov) vectors

$$n_1 = \sqrt{rac{1}{2}}(1, 0_{\perp}, 1), \quad n_2 = \sqrt{rac{1}{2}}(1, 0_{\perp}, -1), \quad (n_1 \cdot n_2) = 1$$

Lightcone coordinates:

$$x = (x^0, x^1, x^2, x^3) \to (x^+, x^-, \vec{x})$$
$$x^+ = x_- = (x \cdot n_2) \quad x^- = x_+ = (x \cdot n_1)$$

Description of the second states				
000000	000000	00000	00000	000000
The shockwave formalism	Dijet production	Light meson production at twist 2		Light meson production at twist 3

Rapidity separation

Let us split the gluonic field between "fast" and "slow" gluons

$$\begin{aligned} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}\,) &= & \mathcal{A}^{\mu a}_{\eta}(|k^+| > e^{\eta} p^+,k^-,\vec{k}\,) \\ &+ & b^{\mu a}_{\eta}(|k^+| < e^{\eta} p^+,k^-,\vec{k}\,) \end{aligned}$$

 $e^{\eta} = e^{-Y} \ll 1$

Large longitudin	al hoost to t	the projectile frame		
0000000	000000	00000	00000	000000
The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3

Large longitudinal boost $\Lambda \propto \sqrt{s} \ b^{\mu}(x) \rightarrow b^{-}(x) \ n_{2}^{\mu} \simeq \delta(x^{+}) \ \mathbf{B}(\vec{x}) \ n_{2}^{\mu}$ (Shockwave approximation)

Multiple interactions with the target can be resummed into path-ordered Wilson lines attached to each parton crossing lightcone time 0:

$$\tilde{U}^{\eta}(\vec{p}) = \int d^{D-2}\vec{z} \,\, e^{-i(\vec{p}\cdot\vec{z})} U^{\eta}_{\vec{z}}, \quad U^{\eta}_{i} = U^{\eta}_{\vec{z}_{i}} = \mathsf{P} \mathsf{e}^{\mathsf{i}g \int b^{-}_{\eta}(z^{+}_{i},\vec{z}_{i}) \, dz^{+}_{i}}$$

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
0000000				
Factorized pict	ure			

Factorized amplitude

$$\mathcal{A}^{\eta} = \int d^{D-2} \vec{z}_1 d^{D-2} \vec{z}_2 \, \Phi^{\eta}(\vec{z}_1, \vec{z}_2) \, \langle \mathcal{P}' | [\operatorname{Tr}(\mathcal{U}^{\eta}_{\vec{z}_1} \mathcal{U}^{\eta\dagger}_{\vec{z}_2}) - \mathcal{N}_c] | \mathcal{P} \rangle$$

Dipole operator $U_{ij}^{\eta} = \frac{1}{N_c} \text{Tr}(U_{\vec{z}_i}^{\eta} U_{\vec{z}_j}^{\eta\dagger}) - 1$ Written similarly for any number of Wilson lines in any color representation!

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
○○○○○●○	000000	00000	00000	000000
Evolution for th	e dipole ope	rator		

B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_s N_c}{2\pi^2} \int d\vec{z}_3 \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \vec{z}_{23}^2} \left[\mathcal{U}_{13}^{\eta} + \mathcal{U}_{32}^{\eta} - \mathcal{U}_{12}^{\eta} + \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta} \right] \\ \frac{\partial \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Mean field approximation (large N_C) \Rightarrow BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathcal{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{\,2}}{\vec{z}_{13}^{\,2} \vec{z}_{23}^{\,2}} \left[\langle \mathcal{U}_{13}^{\eta} \rangle + \langle \mathcal{U}_{32}^{\eta} \rangle - \langle \mathcal{U}_{12}^{\eta} \rangle + \langle \mathcal{U}_{13}^{\eta} \rangle \left\langle \mathcal{U}_{32}^{\eta} \rangle \right]$$

Non-linear term : saturation

000000	00000	00000	000000

Practical use of the formalism

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity η = Y, or at the rapidity of the slowest gluon
- Convolute the solution and the impact factor

Exclusive diffraction probes the b_{\perp} -dependent, off-diagonal part of the non-perturbative scattering amplitude

	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	000000	00000	00000	000000

Exclusive diffractive dijet production

 The shockwave formalism
 Dijet production
 Light meson production at twist 2
 Implications
 Light meson production at twist 3

 000000
 00000
 00000
 00000
 00000
 00000
 00000

 Exclusive diffractive dijet production

LO diagram for diffractive dijet production

$$\begin{split} \mathcal{A} &= \delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int \! d^d \vec{p}_1 d^d \vec{p}_2 \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2) \, \Phi_0(\vec{p}_1, \vec{p}_2) \\ & \times \left\langle \mathcal{P}' \left| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) \right| \mathcal{P} \right\rangle \end{split}$$

 $\tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1},\vec{p}_{2}) = \int d^{d}\vec{z}_{1}d^{d}\vec{z}_{2} e^{-i(\vec{p}_{1}\cdot\vec{z}_{1})-i(\vec{p}_{2}\cdot\vec{z}_{2})} [\frac{1}{N_{c}} \text{Tr}(U^{\alpha}_{\vec{z}_{1}}U^{\alpha\dagger}_{\vec{z}_{2}}) - 1]$

Probes the Dipole Wigner distribution [Hatta, Xiao, Yuan]

NLO dipole diagrams

$$\mathcal{A}_{NLO}^{(1)} \propto \delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int d^d \vec{p}_1 d^d \vec{p}_2 \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2) \Phi_{V1}(\vec{p}_1, \vec{p}_2) \\ \times C_F \left\langle P' \left| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) \right| P \right\rangle$$

NLO double dipole corrections

$$egin{aligned} &\mathcal{A}_{NLO}^{(2)} \propto \delta(p_q^+ + p_{ar{q}} - p_{\gamma}^+) \int\!\! d^d ec{p}_1 d^d ec{p}_2 d^d ec{p}_3 \, \delta(ec{p}_q + ec{p}_{ar{q}} - ec{p}_{\gamma} - ec{p}_1 - ec{p}_2 - ec{p}_3) \ & imes [\Phi_{V1}'(ec{p}_1, ec{p}_2) \, C_F \left< P' \middle| ec{\mathcal{U}}^lpha^lpha(ec{p}_1, ec{p}_2) \left| P
ight>(2\pi)^d \delta(ec{p}_3) \ &+ \Phi_{V2}(ec{p}_1, ec{p}_2, ec{p}_3) \left< P' \middle| ec{\mathcal{W}}(ec{p}_1, ec{p}_2, ec{p}_3) \left| P
ight>] \end{aligned}$$

0000000	000000	00000	00000	ంంంంం
Real corrections				

Real dipole and double dipole corrections

$$\begin{aligned} \mathcal{A}_{R}^{(2)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{\bar{g}}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}d^{d}\vec{p}_{3}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3}) \\ &\times [\Phi_{R1}^{\prime}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \langle P^{\prime} | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) | P \rangle (2\pi)^{d}\delta(\vec{p}_{3}) \\ &+ \Phi_{R2}^{\prime}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \langle P^{\prime} | \tilde{\mathcal{W}}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) | P \rangle] \end{aligned}$$

$$\begin{aligned} \mathcal{A}_{R}^{(1)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2}) \\ &\times \Phi_{R1}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) \left| P \right\rangle \end{aligned}$$

The shockwave formalism	Dijet production 0000●0	Light meson production at twist 2 00000	Implications 00000	Light meson production at twist 3
Divergences				

Divergences

- Rapidity divergence $p_g^+ \to 0$ (spurious gauge pole in axial gauge)
 - Removed via JIMWLK evolution
- UV, soft divergence, collinear divergence
 - Cancels between real and virtual corrections, along with renormalization
- Soft and collinear divergence
 - Removed via a jet algorithm

We thus built a finite NLO exclusive diffractive cross section with saturation effects

	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	00000	00000	00000	000000

Exclusive diffractive light vector meson production

The impact factor is the convolution of a hard part and the vacuum-to-meson matrix element of an operator

 $\int_{x} \left(H_{2}(x) \right)_{ij}^{\alpha\beta} \left\langle \rho \left| \bar{\psi}_{i}^{\alpha}(x) \psi_{j}^{\beta}(0) \right| 0 \right\rangle \qquad \int_{x_{1},x_{2}} \left(H_{3}^{\mu}(x_{1},x_{2}) \right)_{ij,c}^{\alpha\beta} \left\langle \rho \left| \bar{\psi}_{i}^{\alpha}(x_{1}) A_{\mu}^{c}(x_{2}) \psi_{j}^{\beta}(0) \right| 0 \right\rangle$

H and S are by convolution and by summation over spinor and color indices

Once factorization in the *t* channel is done, now factorize in the *s* channel with collinear factorization: expand the impact factor in powers of the hard scale

	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
		00000		
Twist 2				

Collinear factorization at twist 2

• Leading twist DA for a longitudinally polarized light vector meson

$$\left\langle
ho \left| ar{\psi}(z) \gamma^{\mu} \psi(0) \right| 0 \right
angle o p^{\mu} f_{
ho} \int_{0}^{1} dx e^{i x(p \cdot z)} \varphi_{1}(x)$$

• Leading twist DA for a transversely polarized light vector meson

$$\left\langle \rho \left| \bar{\psi}(z) \sigma^{\mu\nu} \psi(0) \right| 0 \right\rangle \rightarrow i(p^{\mu} \varepsilon^{\nu}_{\rho} - p^{\nu} \varepsilon^{\mu}_{\rho}) f^{T}_{\rho} \int_{0}^{1} dx e^{ix(\rho \cdot z)} \varphi_{\perp}(x)$$

The twist 2 DA for a transverse meson is chiral odd, thus $\gamma^* A \rightarrow \rho_T A$ starts at twist 3

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	000000	0000	00000	000000

Exclusive diffractive ρ_L production:

NLO corrections to a twist 2 process

Exclusive diffrac	tive product	tion of a light neutral	vector m	eson
000000	000000	00000	00000	000000
The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3

$\cdots (f) \rightarrow \cdots (f) \rightarrow \cdots (f) (f) \rightarrow \cdots (f))$

$$\begin{split} \mathcal{A} &= -\frac{e_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} (x) \int \frac{d^{d} \vec{p}_{1}}{(2\pi)^{d}} \frac{d^{d} \vec{p}_{2}}{(2\pi)^{d}} \frac{d^{d} \vec{p}_{3}}{(2\pi)^{d}} \\ &\times (2\pi)^{d+1} \delta \left(\vec{p}_{V}^{+} - \vec{p}_{\gamma}^{+} \right) \delta \left(\vec{p}_{V}^{-} - \vec{p}_{\gamma}^{-} - \vec{p}_{2}^{-} - \vec{p}_{3} \right) \\ &\times \left[\left(\Phi_{0}^{\beta} (x, \vec{p}_{1}, \vec{p}_{2}) + C_{F} \Phi_{V1}^{\beta} (x, \vec{p}_{1}, \vec{p}_{2}) \right) \tilde{\mathcal{U}}_{12}^{\eta} (2\pi)^{d} \delta(\vec{p}_{3}) \\ &+ \Phi_{V2}^{\beta} (x, \vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \tilde{\mathcal{W}}_{123}^{\eta} \right] \end{split}$$

Probes gluon GPDs at low x, as well as twist 2 DAs

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
	000000	00000	00000	000000
Divergences				

Divergences

- Rapidity divergence $p_g^+ \rightarrow 0$ (spurious gauge pole in axial gauge)
 - Removed via JIMWLK evolution
- UV, soft divergence, collinear divergence
 - \bullet Mostly cancel each other, but requires renormalization of the operator in the vacuum-to-meson matrix element \to ERBL evolution equation for the DA

We thus built a finite NLO exclusive diffractive amplitude with saturation effects

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
			00000	
Theoretical issu	es			

Two theoretical questions

• How to get to the BFKL limit at NLL?

• What about end-point singularities for the power-suppressed $\gamma_T \rightarrow \rho_L$ contribution?

 The shockwave formalism
 Dijet production
 Light meson production at twist 2
 Implications
 Light meson production at twist 3

 000000
 00000
 00000
 00000
 00000
 00000
 00000

 Comparison with previous results: JIMWLK/BFKL equivalence

In the forward t = 0 limit and in the linear BFKL limit, the $\gamma_L \rightarrow \rho_L$ impact factor was computed at NLO [Ivanov, Kotsky, Papa].

JIMWLK convolution

BFKL convolution

$$\int d^d p_1 d^d p_2 \Phi_{CGC}(p_1, p_2) \tilde{\mathcal{U}}(p_1, p_2)$$

 $\int d^{d}q_{1}d^{d}q_{2}\Phi_{BFKL}(q_{1},q_{2})R(q_{1})R(q_{2})$

 $\tilde{\mathcal{U}}(p_1, p_2)$ dipole scattering operator

R(q) Reggeon field

Defining the Reggeon field in the CGC as the logarithm of a Wilson line [Caron-Huot]

$$R^{a}(x) \equiv \frac{f^{abc}}{gC_{A}} \left(\ln U_{x}^{adj} \right)^{bc}$$

$$U_{x} = 1 + igt^{a}R^{a}(x) - \frac{g^{2}}{2}t^{a}t^{b}R^{a}(x)R^{b}(x) + O(g^{3})$$

Such fields are Reggeized by the JIMWLK Hamiltonian, satisfy the BFKL equation and satisfy bootstrap equations.

	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	000000	00000	00000	000000
JIMWLK/BFKL	equivalence	3		

Linear limit of diffractive CGC impact factors

$$\int d^{2} p_{1} d^{2} p_{2} \varphi (p_{1}, p_{2}) \tilde{\mathcal{U}} (p_{1}, p_{2})$$

$$= \frac{g^{2}}{4N_{c}} \int d^{2} q_{1} d^{2} q_{2} R^{a} (q_{1}) R^{a} (q_{2}) [2\varphi (q_{1}, q_{2}) - \varphi (q_{1} + q_{2}, 0) - \varphi (0, q_{1} + q_{2})]$$

This matches our result to the leading order BFKL result.

At NLL accuracy, things are interestingly worse due to the ambiguity of distribution of radiative corrections between impact factors and kernels.

Equivalence with	RFKL at N			
The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3

Linear limit: usual k_t-factorization (BFKL framework)

s-channel discontinuity of $A + B \rightarrow A' + B'$ scattering amplitudes

$$\delta(p_{A'}+p_{B'}-p_{A}-p_{B})Disc_{s}\mathcal{A}_{AB}^{A'B'} \propto \Phi(A',A)\otimes \mathcal{K}\otimes \Phi(B',B)$$

For any non-singular operator \mathcal{O} this discontinuity is invariant under

$$\Phi(A',A) o \Phi(A',A) \mathcal{O}, \quad \mathcal{K} o \mathcal{O}^{-1}\mathcal{K}\mathcal{O}, \quad \Phi(B',B) o \mathcal{O}^{-1}\Phi(B',B)$$

i.e. there is an ambiguity of distribution of corrections between the impact factors and the kernel. In the linear approximation of BK there exists an operator ${\cal O}$ such that

$$\Phi_{BK} \otimes \mathcal{K}_{BK} \otimes \Phi_{BK} = (\Phi_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \mathcal{K}_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \Phi_{BFKL})$$

The expression for \mathcal{O} to make the kernels explicitly equivalent at NLO accuracy under such a change of variables is known [Fadin, Fiore, Grabovsky, Papa] Comparing our NLL CGC impact factor with the NLL BFKL impact factor should confirm this expression.

End point sing	ularities and	factorization		
000000	000000	00000	00000	000000
The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3

End point singularities?

Leading order impact factor for, respectively, $\gamma_L^* \to V_L$ and $\gamma_T^* \to V_L$ transitions:

$$\begin{split} \Phi_{L}^{(0)} &= \frac{2x\bar{x}p_{V}^{+}Q}{(\bar{x}\vec{p}_{1}-x\vec{p}_{2})^{2}+x\bar{x}Q^{2}}, \\ \Phi_{T}^{(0)} &= -\frac{(x-\bar{x})p_{V}^{+}(\bar{x}\vec{p}_{1\perp}-x\vec{p}_{2\perp})\cdot\vec{\varepsilon}_{\gamma_{T}}}{(\bar{x}\vec{p}_{1}-x\vec{p}_{2})^{2}+x\bar{x}Q^{2}} \end{split}$$

No end point singularity, even for a transverse photon and even in the photoproduction limit and even at NLO.

With null transverse momenta in the *t* channel, one could encounter $x \in \{0, 1\}$ end point singularities as $\frac{1}{x\bar{x}Q^2}$ thus breaking collinear factorization.

	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
000000	000000	00000	00000	00000

Exclusive diffractive ρ_T production:

LO but twist 3 process

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications 00000	Light meson production at twist 3
Previous study				

Previous works [Anikin, Besse, Ivanov, Pire, Szymanowski, Wallon]

- Full $\gamma_T \rightarrow \rho_T$ impact factor, but
 - Linear BFKL regime only
 - Forward t = 0 case only
 - Hence No $\gamma_I^* \rightarrow \rho_T$ transition allowed
- Proved the equivalence between two major schemes for collinear factorization at twist 3, but in a process-dependent way
- Required interesting algebra to restore QCD gauge invariance, but no deep understanding for the origin of invariance breaking in the first place

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
	000000	00000	00000	000000
2-body diagram	S			

2-body contribution

$$\int d^{2}\vec{z_{1}}d^{2}\vec{z_{2}} \Phi_{q\bar{q}}^{2b}\left(\vec{z_{1}},\vec{z_{2}}\right) \operatorname{Tr}\left(U_{1}U_{2}^{\dagger}\right)\left\langle\rho\left|\bar{\psi}\psi\right|0\right\rangle$$

Note that this is not the whole story. This nice and simple contribution only arises once we cancel all contributions which break QCD gauge invariance up to twist 4 corrections.

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
0000000	000000	00000	00000	
3-body contribu	tion			

$$\int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \Phi^{3b}_{q\bar{q}g} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \operatorname{Tr} \left[U_1 t^b U_2^{\dagger} t^a \right] U_3^{ab} \left\langle \rho \left| \bar{\psi} g A \psi \right| 0 \right\rangle$$

Double-dipole term even at tree level \Rightarrow Great sensitivity to saturation Note that this is not the whole story. This nice and simple contribution only arises once we cancel all contributions which break QCD gauge invariance up to twist 4 corrections.

The shockwave formalism	Dijet production	Light meson production at twist 2	Implications	Light meson production at twist 3
0000000	000000	00000	00000	
Divergences				

Divergences and issues?

- No divergence. No end point singularity which would break factorization in a pure collinear framework. The mixed CGC/collinear framework gets rid of *s*-channel factorization breaking.
- QCD gauge invariance is restored up to twist 4 terms
- Presence of a double dipole term at LO: enhanced saturation effects?
- In the Wandzura-Wilczek approximation, it will be easy get the NLO corrections to this twist 3 process and no end point singularity is to be expected

We thus built a finite twist 3 exclusive diffractive amplitude with saturation effects

The shockwave formalism	Dijet production 000000	Light meson production at twist 2 00000	Implications 00000	Light meson production at twist 3
Conclusion				

- We provided the full computation of the $\gamma^{(*)} \rightarrow JetJet$ and $\gamma^*_{L,T} \rightarrow \rho_L$ impact factors at NLO accuracy, and the twist 3 impact factors for $\gamma^*_{L,T} \rightarrow \rho_T$ in the shockwave framework.
- Our results are perfectly finite, even for photoproduction (at large t for ρ)
- The computation can be adapted for twist 3 NLO production in the Wandzura-Wilczek approximation, removing factorization breaking end-point singularities even at NLO for a process which would not factorize in a full collinear factorization scheme
- Exclusive diffractive processes are perfectly suited for precision saturation physics and gluon tomography with b_{\perp} dependence at the EIC. Dijet production probes the dipole Wigner distribution, ρ meson production probes gluon GPDs at small x.

Effective CGC Feynman rules for fields

The recursion to exponentiate slow gluon scatterings into a Wilson line only starts at order g_s

$$\begin{split} A^{\mu}_{eff}\left(z_{0}\right)|_{z_{0}^{+}<0} &= A^{\mu}\left(z_{0}\right) - 2i\int\!d^{D}z_{3}\,\delta\left(z_{3}^{+}\right)\,G^{\mu}_{\sigma_{\perp}}\left(z_{30}\right)\left(U^{ba}_{\vec{z}_{3}} - \delta^{ba}\right)F^{+\sigma_{\perp}}\left(z_{3}\right)\\ \overline{\psi}_{eff}\left(z_{0}\right)|_{z_{0}^{+}<0} &= \bar{\psi}\left(z_{0}\right) + \int\!d^{D}z_{1}\,\delta\left(z_{1}^{+}\right)\overline{\psi}\left(z_{1}\right)\left(U_{\vec{z}_{1}} - 1\right)\gamma^{+}G\left(z_{10}\right)\\ \psi_{eff}\left(z_{0}\right)|_{z_{0}^{+}<0} &= \psi\left(z_{0}\right) - \int d^{D}z_{2}\delta\left(z_{2}^{+}\right)\,G\left(z_{02}\right)\gamma^{+}\psi\left(z_{2}\right)\left(U^{\dagger}_{\vec{z}_{2}} - 1\right) \end{split}$$

$$\int d^{2}\vec{z_{1}}d^{2}\vec{z_{2}} \Phi_{q\bar{q}}^{2b}\left(\vec{z_{1}},\vec{z_{2}}\right) \operatorname{Tr}\left[\left(U_{1}-1\right)\left(U_{2}^{\dagger}-1\right)\right]\left\langle\rho\left|\bar{\psi}\psi\right|0\right\rangle$$

Contains monopole contributions

Antiquark monopole 2-body diagram

$$\int d^{2}\vec{z}_{2}\,\,\Phi_{\bar{q}}^{2b}\left(\vec{z}_{2}\right)\mathrm{Tr}[\left(U_{2}^{\dagger}-1\right)]\left\langle \rho\left|\bar{\psi}\psi\right|0\right\rangle$$

 $\int d^{2}\vec{z_{1}}d^{2}\vec{z_{2}}d^{2}\vec{z_{3}} \Phi_{q\bar{q}g}^{3b}\left(\vec{z_{1}},\vec{z_{2}},\vec{z_{3}}\right) \mathrm{Tr}[(U_{1}-1)t^{b}(U_{2}^{\dagger}-1)t^{a}](U_{3}^{ab}-\delta^{ab})\left\langle \rho\left|\bar{\psi}A\psi\right|0\right\rangle$

Contains dipole and monopole contributions

Double-dipole term even at tree level \Rightarrow Great sensitivity to saturation

3-body $(\bar{q}g)$ -dipole diagram

$$\mathcal{A}_{\bar{q}g}^{3b} = \int d^2 \vec{z}_2 d^2 \vec{z}_3 \,\, \Phi_{\bar{q}g}^{3b} \left(\vec{z}_2, \vec{z}_3 \right) \text{Tr}[t^b (U_2^{\dagger} - 1)t^a] (U_3^{ab} - \delta^{ab}) \left\langle \rho \left| \bar{\psi} A \psi \right| 0 \right\rangle$$

3-body $(q\bar{q})$ -dipole diagram

$$\mathcal{A}_{qar{q}}^{3b}=\int\!d^2ec{z_1}d^2ec{z_2}\;\Phi_{qar{q}}^{3b}\left(ec{z_1},ec{z_2}
ight)\mathrm{Tr}[(U_1-1)t^b(U_2^\dagger-1)t^a]\delta^{ab}\left\langle
ho\left|ar{\psi}A\psi
ight|0
ight
angle$$

3-body (q)-monopole diagram

$$\mathcal{A}_{q}^{3b} = \int d^{2}\vec{z}_{1} \Phi_{q}^{3b}\left(\vec{z}_{1}\right) \operatorname{Tr}\left[\left(U_{1}-1\right)t^{b}t^{a}\right] \delta^{ab}\left\langle \rho \left|\bar{\psi}A\psi\right|0\right\rangle$$

3-body (g)-monopole diagram

$$\mathcal{A}_{g}^{3b} = \int d^{2}\vec{z}_{3} \Phi_{g}^{3b}(\vec{z}_{3}) \operatorname{Tr}[t^{b}t^{a}](U_{3}^{ab} - \delta^{ab}) \left\langle \rho \left| \bar{\psi} A \psi \right| 0 \right\rangle$$

Cancelling the 2-body monopoles

Antiquark monopole part of the natural CGC diagram

• Monopole part of the quark line

$$\overline{\psi}_{eff}\left(z_{0}\right)|_{z_{0}^{+}<0}=\overline{\psi}\left(z_{0}\right)+\int d^{D}z_{1}\,\delta\left(z_{1}^{+}\right)\overline{\psi}\left(z_{1}\right)\left(U_{\vec{z}_{1}}-1\right)\gamma^{+}G\left(z_{10}\right)$$

Simple algebra allows one to get

$$\int d^{D}z_{1} \int \frac{d^{D}q}{\left(2\pi\right)^{D}} \delta\left(z_{1}^{+}\right) \left(\frac{-i\bar{\psi}\left(z_{1}\right)}{\left(q^{-}-\frac{\bar{q}^{2}-i0}{2q^{+}}\right)} + \frac{\bar{\psi}\left(z_{1}\right)\overleftarrow{\partial}\gamma^{\mu}\gamma^{+}}{2q^{+}\left(q^{-}-\frac{\bar{q}^{2}-i0}{2q^{+}}\right)}\right) e^{-i(q\cdot z_{10})}$$

• Thus one term contributes to a 2-body monopole contribution, and (Dirac equation) the other term contributes to a 3-body monopole contribution.

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements do not depend on z^+ variables at twist 3 accuracy ...[censored technicalities]... we get the sum between the natural 2-body antiquark monopole diagram and the 2-body antiquark monopole part of the natural CGC diagram

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements are at most linear in z_{\perp} , the sum cancels iff

$$\frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)} - \frac{\vec{q}^{2}}{2q^{+}}} - \frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)}} \bigg|_{\vec{q} = \vec{0}} = 0$$
$$\frac{\partial}{\partial q_{\perp}^{\mu}} \left(\frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)} - \frac{\vec{q}^{2}}{2q^{+}}} - \frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)}} \right) \bigg|_{\vec{q} = \vec{0}} = 0$$

Cancelling the 3-body unnatural dipoles, and monopoles

"Unnatural" 3-body diagrams

$$\begin{aligned} \Phi_{qg}\left(\vec{z}_{1},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle &= \int d^{2}\vec{z}_{2} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle + \text{Twist }4 \\ \Phi_{\bar{q}g}\left(\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle &= \int d^{2}\vec{z}_{1} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle + \text{Twist }4 \\ \Phi_{q\bar{q}}\left(\vec{z}_{1},\vec{z}_{2}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle &= \int d^{2}\vec{z}_{3} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle + \text{Twist }4 \\ \Phi_{g}\left(\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle &= \int d^{2}\vec{z}_{1} d^{2}\vec{z}_{2} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle + \text{Twist }4 \\ \Phi_{q}\left(\vec{z}_{1}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle &= \int d^{2}\vec{z}_{2} d^{2}\vec{z}_{3} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right)\left\langle\rho\left|\vec{\psi}A\psi\right|0\right\rangle + \text{Twist }4 \end{aligned}$$

Hence the 3-body total from 3-body diagrams

$$\begin{aligned} \mathcal{A}_{3}^{3b} &= \int d^{2} \vec{z}_{1} d^{2} \vec{z}_{2} d^{2} \vec{z}_{3} \, \Phi^{3b}_{q\bar{q}g} \left(\vec{z}_{1}, \vec{z}_{2}, \vec{z}_{3} \right) \left\langle \rho \left| \vec{\psi} A \psi \right| 0 \right\rangle \\ &\times \left[\mathrm{Tr} (U_{1} t^{b} U_{2}^{\dagger} t^{a}) U_{3}^{ab} - \mathrm{Tr} (t^{b} U_{2}^{\dagger} t^{a} \delta^{ab}) \right] \end{aligned}$$

Total from 3-body diagrams

$$\begin{split} \mathcal{A}^{3b} &= \int d^{2}\vec{z_{1}}d^{2}\vec{z_{2}}d^{2}\vec{z_{3}} \, \Phi^{3b}_{q\bar{q}g}\left(\vec{z_{1}},\vec{z_{2}},\vec{z_{3}}\right) \left\langle \rho \left| \vec{\psi} A \psi \right| 0 \right\rangle \\ &\times \left[\mathrm{Tr}(U_{1}t^{b}U_{2}^{\dagger}t^{a})U_{3}^{ab} - \mathrm{Tr}(t^{b}U_{2}^{\dagger}t^{a}\delta^{ab}) \right] \end{split}$$

"3-body" antiquark monopole from the natural 2-body diagram

$$\Phi_2^{3b}(\vec{z}_2) = \int d^2 \vec{z}_1 d^2 \vec{z}_3 \, \Phi_{q\bar{q}g}(\vec{z}_1, \vec{z}_2, \vec{z}_3) + \text{Twist } 4$$

Sums up to a gauge invariant amplitude

$$\begin{split} \mathcal{A}^{3b} &= \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \, \Phi^{3b}_{q\bar{q}g} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \\ &\times \left[\mathrm{Tr} (U_1 t^b U_2^\dagger t^a) U_3^{ab} - C_F \right] \left\langle \rho \left| \bar{\psi} A \psi \right| \mathbf{0} \right\rangle \end{split}$$

Final amplitude

$$\begin{split} \mathcal{A} &= \int d^{2} \vec{z}_{1} d^{2} \vec{z}_{2} \, \Phi_{q\bar{q}}^{2b} \left(\vec{z}_{1}, \vec{z}_{2} \right) \left[\operatorname{Tr} \left(U_{1} \, U_{2}^{\dagger} \right) - N_{c} \right] \\ &+ \int d^{2} \vec{z}_{1} d^{2} \vec{z}_{2} d^{2} \vec{z}_{3} \, \Phi_{q\bar{q}g}^{3b} \left(\vec{z}_{1}, \vec{z}_{2}, \vec{z}_{3} \right) \left[\operatorname{Tr} \left(U_{1} t^{b} \, U_{2}^{\dagger} t^{a} \right) \, U_{3}^{ab} - C_{F} \right] \end{split}$$

Expansion in Reggeons in the dilute limit: (Reggeon momenta q_1, q_2)

$$\begin{split} \Phi_{BFKL} &= \int d^2 \vec{z}_1 d^2 \vec{z}_2 \, \Phi_{q\bar{q}}^{2b} \left(\vec{z}_1, \vec{z}_2 \right) \left(e^{i(\vec{q}_1 \cdot \vec{z}_2)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_1)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \\ &- \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \Phi_{q\bar{q}g}^{3b} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \left[N_c \left(e^{i(\vec{q}_1 \cdot \vec{z}_3)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_3)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \right. \\ &- \left(\frac{N_c^2 - 1}{2N_c} \right) \left(e^{i(\vec{q}_1 \cdot \vec{z}_2)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_1)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \right] \end{split}$$

Obviously gauge invariant in the BFKL sense: $\Phi_{BFKL} = 0$ for $q_1 = 0$ or $q_2 = 0$. In the dilute, forward limit, our result matches the previous BFKL results