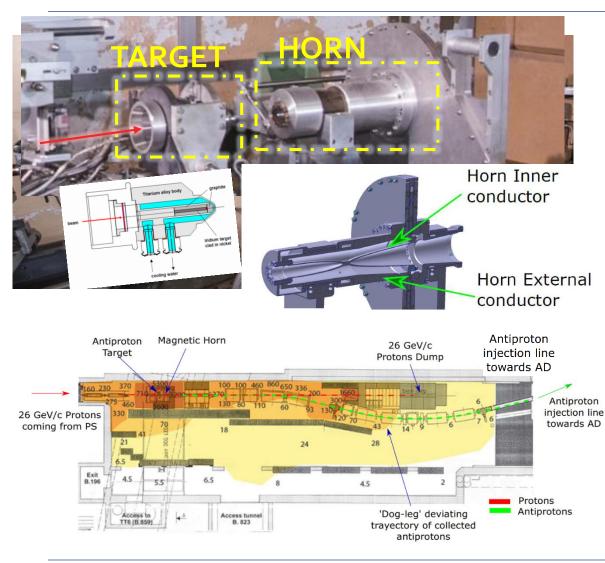
### PROTAD Target and HRMT-48 Experiment, Relevance for BIDs

### **RADIATE Collaboration Meeting**

<u>C. Torregrosa,</u> M. Calviani, A. Perillo-Marcone, N. Solieri, J. Canhoto, R. Ferriere, T. Coiffet, M. Timmins, E. Fornasiere, E. Grenier-Boley, R. Seidenbinder, D. Grenier J. Busom S. Sorlut, M. Butcher, L. Grec, J. Sola, M. Guinchard, L. Bianchi, R.Gerard, M. Redondas, M. Bergeret, A. Porret, B. Dickinson






20/12/2018 RADIATE Collaboration Meeting

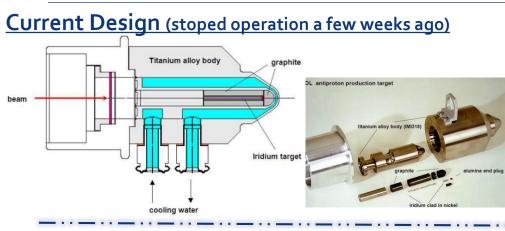
### Outline

- 1) Introduction: The current (*old*) AD-Target vs New Design (PROTAD)
- 2) Numerical Simulations, understanding the dynamic response of the AD-Target core
- 3) Previous HRMT Experiments (HRMT-27 & HRMT-42)
- 4) HiRadMat-48 PROTAD Experiment: **Testing Real Scale Prototypes**
- 5) Conclusions and Relevance for BIDs and Future Perspectives



### **The AD-Target Area**




20/12/2018



 Renovation of the Area during CERN's Long Shut Down 2 (2019-2021)

**RADIATE Collaboration Meeting** 3

# **Current AD-Target Design vs New Design**



- Design from 1989 maintained until nowadays
- Water-cooled double wall Ti-6AI-4V assembly
- **Iridium core**, Ø 3 mm by 55 mm length
- Graphite matrix Ø 15 mm

**New Proposed Design** 

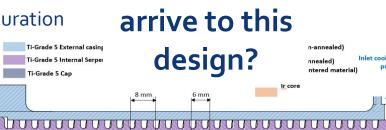
#### Named PROTAD Target from (PROTotype AD Target





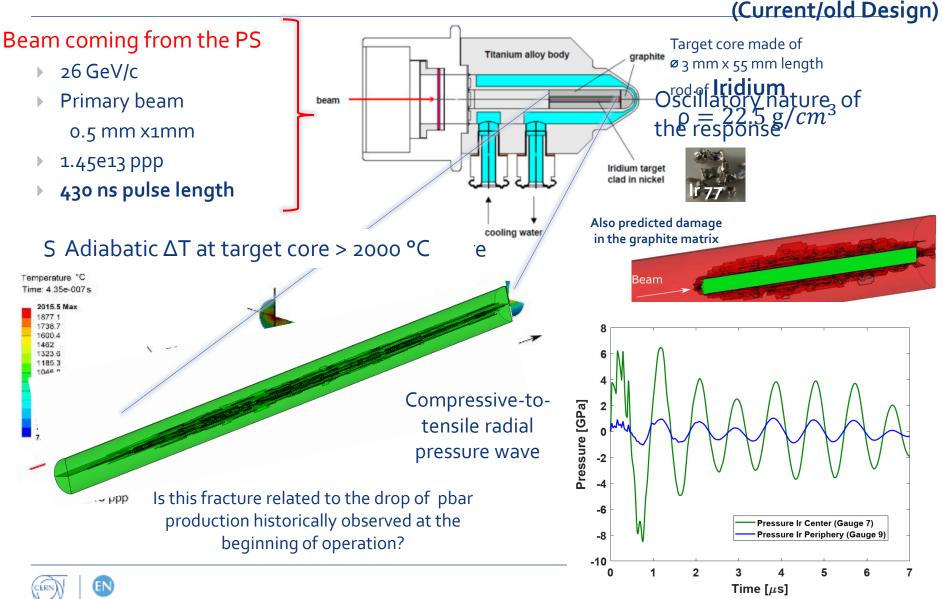
New core & matrix configuration 

Electron


Weldings

Ø 15 mm

- Larger cores diameter (up to 1) 10 mm)
- Multi-material core 2) configuration (Ta, Ir)
  - Expanded graphite (EG) as matrix material


#### Substantially more compact (Ø30 mm external diam vs old. Ø 100 mm)

Pressurized-Air-cooled (5-6 bars) double wall Ti-6Al-4V assembly, with an internal serpentine. How did we



**Cooling Channel** 

# **Conditions reached in the AD-Target**



# Particularities of the AD-T Operation

Target core is subjected to induced extreme by: dynamic stresses

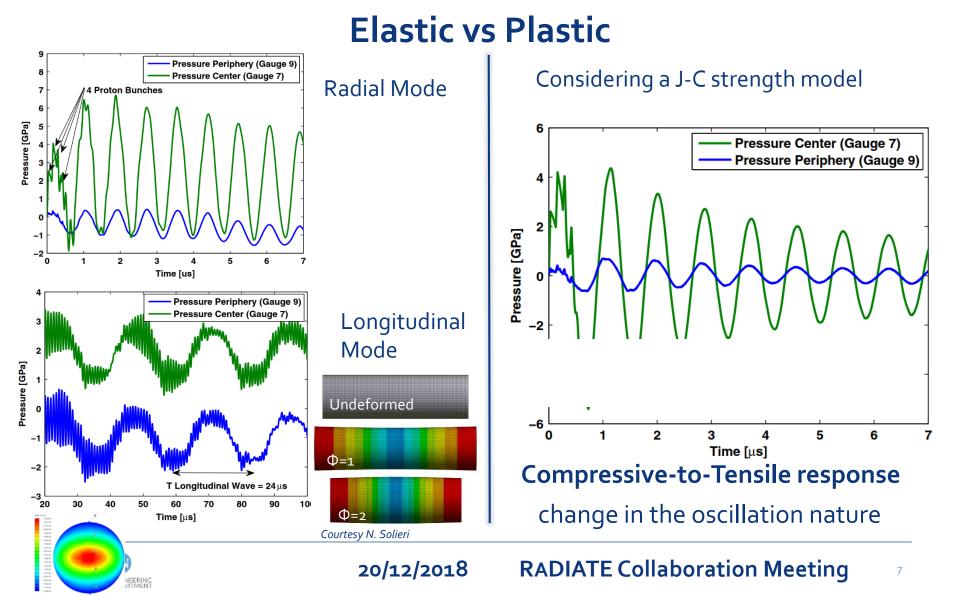
- high-density core 2)
  - Very focused primary proton beam
  - Very short pulse
  - Small core diameter

- Mean "instantaneous" power density of 3 · 10<sup>4</sup> TW/m<sup>3</sup>
- $Max \Delta T$  in the core per pulse
- = 1800-2000 °C
  - Excitation of radial mode, exposing the core to tensile pressures of several GPas

Fracture of core material may have a direct influence in pbar production due to loss of effective core density. In addition, damage of graphite matrix

**R&D Activities** to study the response of refractory metals at such conditions

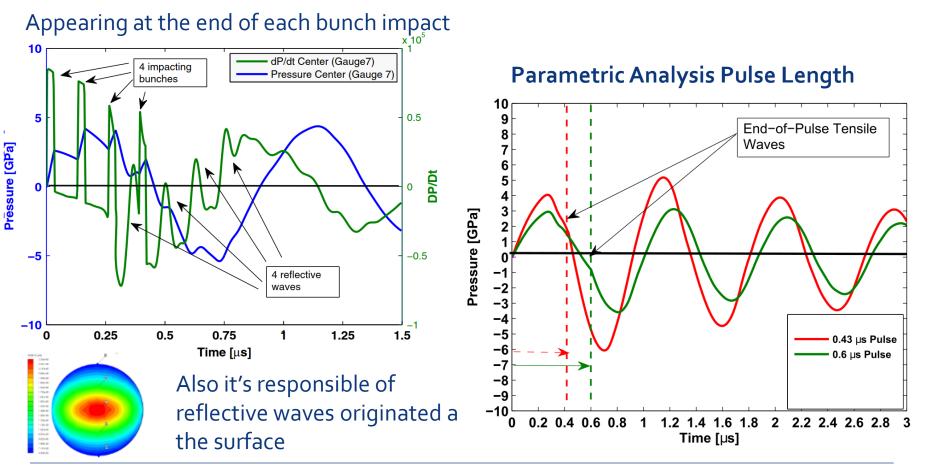
Numerical Simulations: Use of hydrocodes 1)


1)

3)

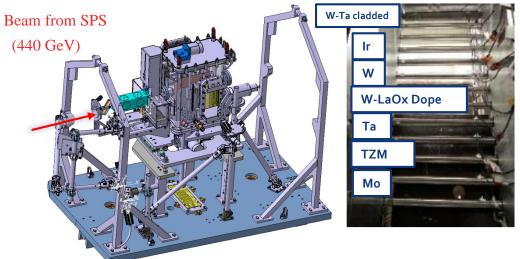
- Validate simulations & investigate new HRMT-27 Experiment (2015) 2) candidate material
- HRMT-42 & HRMT-48 PROTAD Experiments -> Prototyping **3**)
  - 4) \*Opening of a spent AD-Target, see presentation E. Fornasiere




### Hydrocodes applied to the AD-Target Core (1)



### Why this Radial Mode is excited?


### It is very important <u>when</u> the pulse finishes

#### **End-of-Pulse Tensile Response**



C. Torregrosa *et al.* <u>"CERN antiproton target: Hydrocode analysis of its core material dynamic response</u> <u>under proton beam impact", Phys. Rev. Accel. Beams 19, 073402</u>

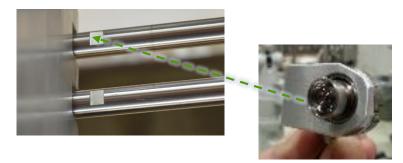
# The HRMT-27 Experiment (2015)



- 13 rods of high-Z materials impacted by 440 GeV/c beam
- Irradiation performed in a ramped way to obtain material response at intermediate state before reaching AD-Target conditions

### **Targets**

8 mm diameter targets.


Targets geometry and beam parameters adapted to:

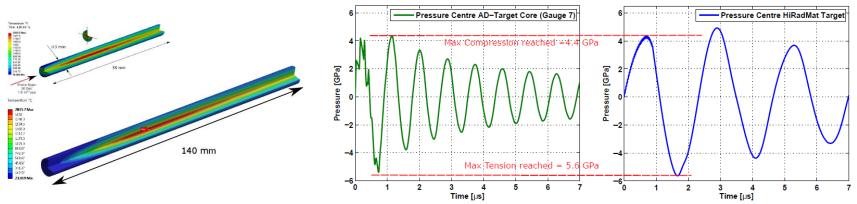
- Recreate AD-Target
  conditions
- Obtain measurable response at their surface



### **Online Instrumentation**

Optical instruments pointing at targets surface to measure their velocity and crosscheck the numerical simulations.






20/12/2018

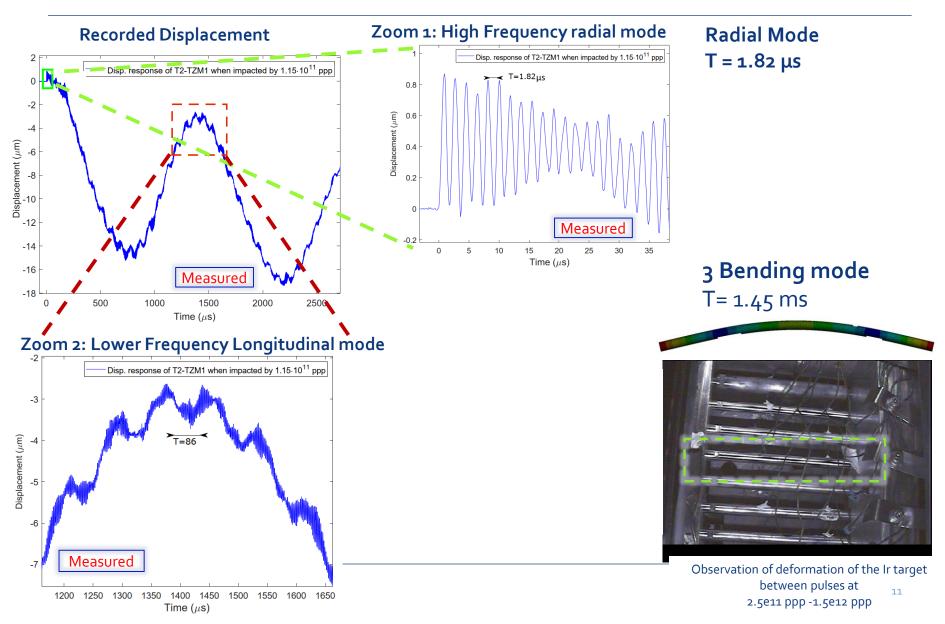
#### **RADIATE** Collaboration Meeting

### **Conditions Reached in the HRMT-27 Targets**

#### At highest intensity: AD-Target conditions

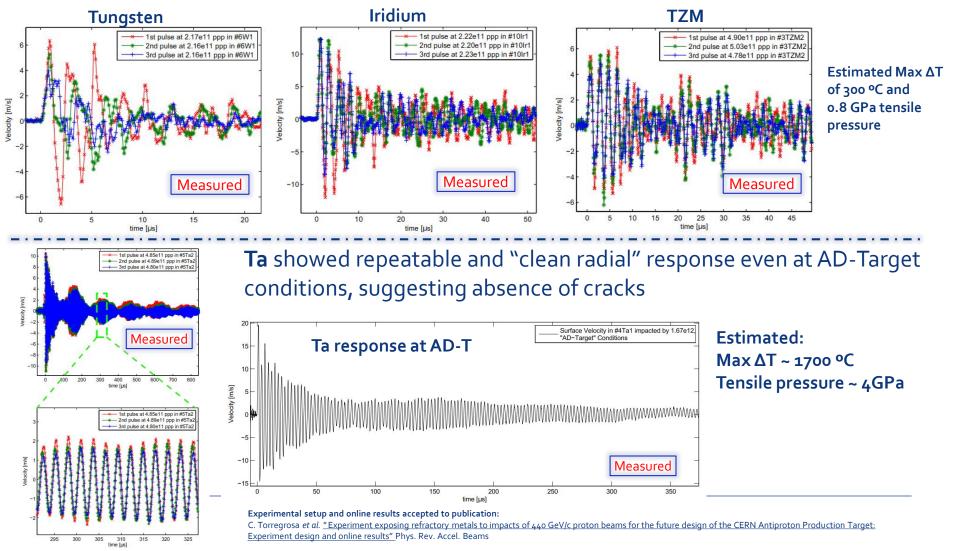


#### Summary of conditions during the intensity ramp up


|            | Lowest Intensity<br>1011 ppp |                           |                         | <b>2·10<sup>11</sup></b> | Medium Intensit<br>ppp – 5·10 <sup>11</sup> ppp – 7 | AD-Target Conditions<br>1.5·10 <sup>12</sup> ppp |                |                               |
|------------|------------------------------|---------------------------|-------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------|-------------------------------|
| Material   | Max ∆T<br>(°C)               | Max VM<br>(MPa)           | Max Tensile<br>Pressure | Max ΔT<br>(°C)           | Max VM<br>(GPa)                                     | Max Tensile Pressure<br>GPa                      | Max ΔT<br>(°C) | Max Tensile<br>Pressure (GPa) |
| Ir         | 160 °C                       | 500 MPa                   | 250 MPa                 | 450 - 870 - 1300         | 1.2 – 0.8 - 1 GPa<br>(plastic-work)                 | 0.76 - 2 - 4 GPa                                 | 2200 °C        | 9 GPa                         |
| W          | 130 °C                       | 380 MPa<br>(plastic-work) | 200 MPa                 | 430 - 800 -1200          | Limited by plastic work                             | 0.5 - 1 -2.1 GPa                                 | 2000 °C        | 5.6 GPa                       |
| Mo/<br>TZM | 65 °C                        | 120 MPa                   | 120 MPa                 | 150 - 300 -500           | 250 MPa <<br>Limited by plastic work                | 0.2 – 0.24 0.44 GPa                              | 850 °C         | 1.3 GPa                       |
| Та         | 115 °C                       | 200 MPa                   | 240 MPa                 | 360-700- 1000            | Limited by plastic work                             | 0.78 - 1.6 - 2.6 GPa                             | 1850 °C        | 4.5 GPa                       |

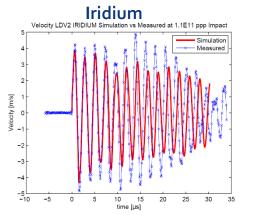


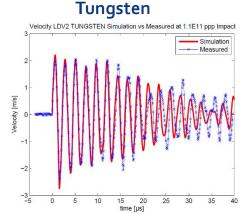
20/12/2018

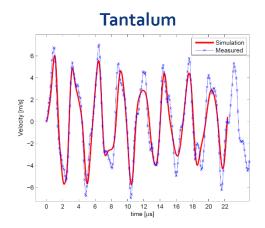

**RADIATE** Collaboration Meeting

## **Dynamic Response at Low Intensity**

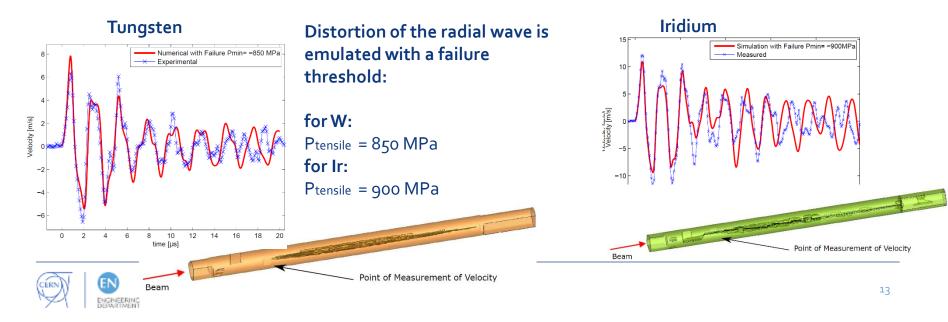



### **Dynamic Response when Increasing Intensity**


Distortion of the radial wave indicated that **internal damage in W, TZM and Ir** already taking place even from the 2<sup>nd</sup> Irradiation intensity (conditions ~7 times lower as reached in the AD-Target)




# Hydrocodes Simulations vs Experiment (1)


#### <u>Crosscheck at lowest intensity impacts ( $\Delta T \approx 160 \text{ °C}$ )</u>







#### <u>Crosscheck and bench marking of failure models at medium intensity ( $\Delta T \approx 530$ °C)</u>



# HRMT-27 Outcomes + Next Steps

- 1) <u>Predicted radial and longitudinal modes have been measured.</u>
- 1) Material damage takes place at conditions ~5-7 times lower than the reached in the AD-Target.
- **2) Tantalum** showed the best dynamic response. Strong candidate material for the new design.

#### Next questions to be answered:

- Survival of Ta when impacted by high no. of pulses?
- 2) Avoid target bending when sliced?

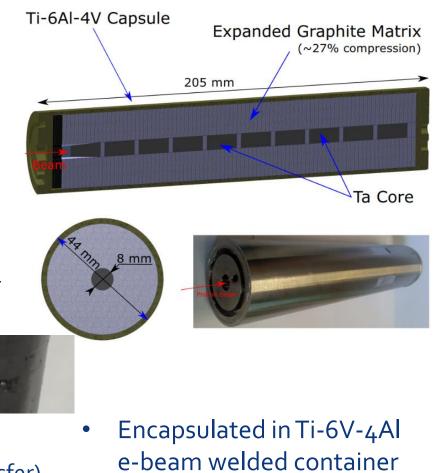
- HRMT-42
- 3) New Target Prototyping. What about the core containing matrix?

Study the response of a first <u>scaled</u> prototype of the AD-Target



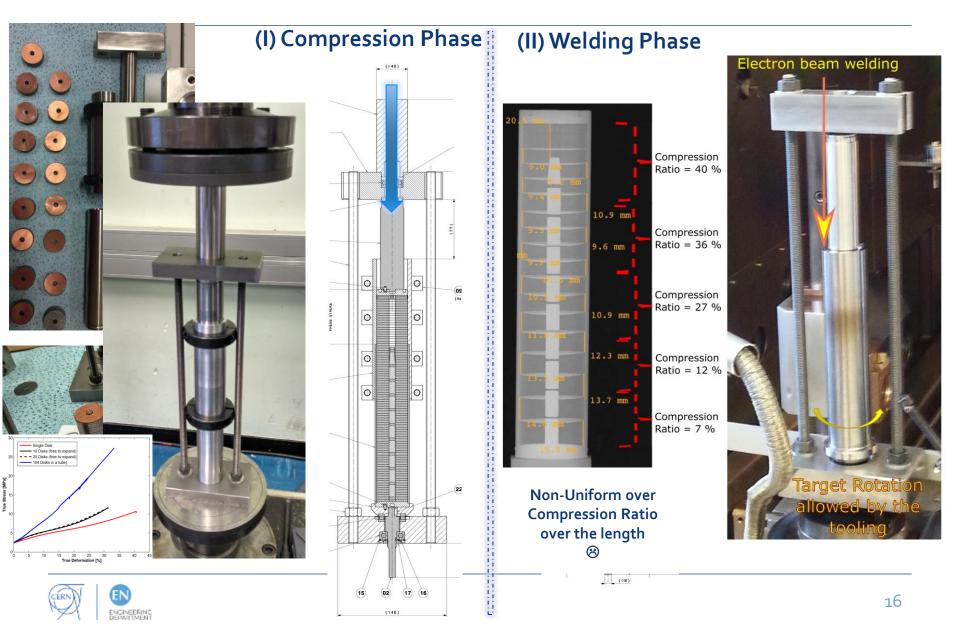
20/12/2018 RADIATE Collaboration Meeting 14

2<sup>nd</sup> Proposed Experiment


# The HRMT-42 Target

### <u>Up-Scaled Prototype of the</u> <u>AD-Target core & Matrix</u>

- Core of 8 mm diameter <u>Ta rods</u> (un-annealed)
- Core is sliced to avoid excitation of bending modes
- Embedded in a matrix made of <u>compressed</u> layers of Expanded Graphite (EG).

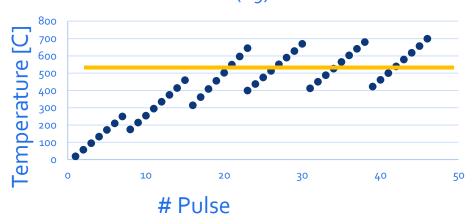


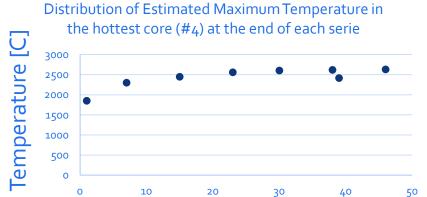

 Provide contact pressure with the core and guarantee a continuous interface (heat transfer) even if the core undergoes plastic deformation.





### The HRMT-42 Target: Assembly and Welding Procedure





# HRMT-42 Target, Testing in HiRadMat

#### #47 pulses were impacted (7·10<sup>13</sup> POT)

|         | Pulses | Time Pulses<br>(min) | Time cooling<br>(min) |
|---------|--------|----------------------|-----------------------|
| Serie 1 | 7      | 10                   | 20                    |
| Serie 2 | 8      | 5.333                | 21                    |
| Serie 3 | 8      | 5.333                | 24                    |
| Serie 4 | 8      | 5.333                | 27                    |
| Serie 5 | 8      | 5.333                | 27                    |
| Serie 6 | 8      | 8                    | No relevant           |

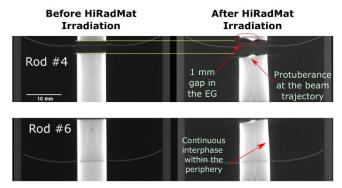
Distribution of Estimated Minimum Temperature (right before each pulse impact) in the hottest core (#9)





# Pulse

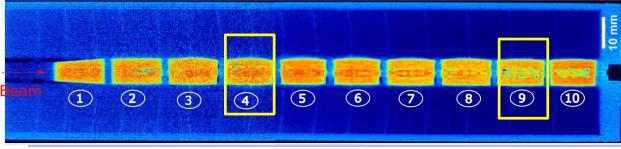
#### **Accumulative heating**


- Max temperature reached estimated in 2650 °C
- Estimated accumulative <u>time above 1600 °C = 14 s</u>
- Estimated accumulative <u>time above 1000 °C = 5 mins</u>
- Estimated accumulative <u>time above 800 °C = 15 mins</u>

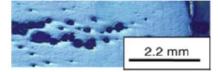


20/12/2018 RADIATE Collaboration Meeting 17

# Non-Destructive PIEs of HRMT-42 Target


### X-ray tomography at the ESRF (Grenoble, France)



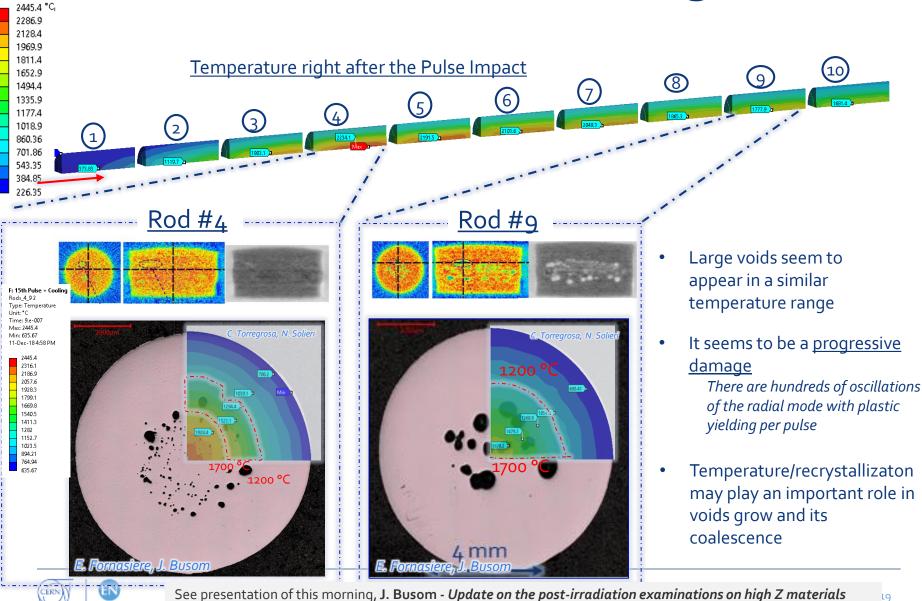

- Extensive plastic in the Ta
- It seems that the EG matrix can adapt to changes in the Ta shape

### Neutron Tomography at NEUTRA (PSI, Switzerland)

- Neutron tomography showed the formation of voids in the Ta core, especially in the downstream ones.
- The most loaded rods (T and tensile pressure) are not necessary the most damaged...



- Not observed in HRMT-27
- Similar to «spalling» fracture for Ta described in in literature.




Gray III GT, Bourne NK, Vecchio KS, Millett JCF. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel. *Int J Fract* 2010; **163**: 243–258.

C. Torregrosa et al. "Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: vesign, manufacturing, and testing under proton beam impacts" Phys. Rev. Accel. Beams 21, 073001

**Results published in:** 

### **Observed voids in HRMT-42 Target**



See presentation of this morning, J. Busom - Update on the post-irradiation examinations on high Z materials from HRMT-27 and HRMT-42 experiments- 5<sup>th</sup> RaDIATE Collaboration Meeting

# **Outcomes of HRMT-42 + Next Steps**

Assembly procedure including EG validated 1)

Room for improvement: Non-uniform EG compression ratio...

- X-ray, neutron tomographies, ongoing PIEs, show good performance of the EG 1) matrix and revealed a new mode of Ta fracture.
- Conditions reached in the core of the new design shall be "relaxed" (increasing 2) core diameter and/or defocusing the primary beam)

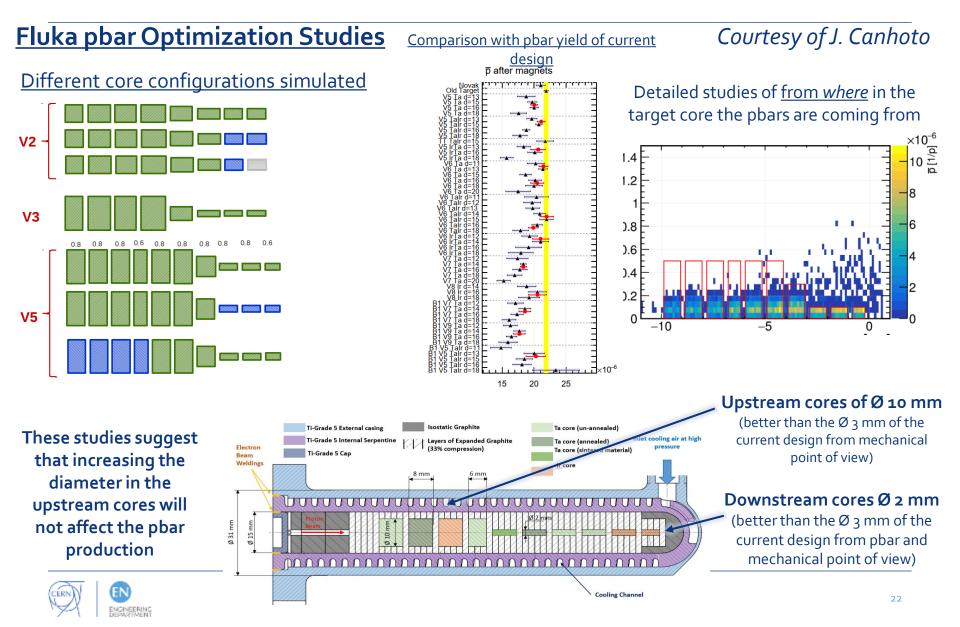
### **Next Prototyping Steps:**

- Scaled-down to real dimensions. Solve non-uniform 1) Compression ratio.
- Impact of beam parameters "relaxation"? 2)
- Further understanding of Ta spalling ב) Comparison between different Ta grades? (annealing/no annealing, Test real scale AD-Target TaW alloys)
- Direct comparison between Ta vs Ir, EG vs Isostatic graphite? 4)



20/12/2018 **RADIATE Collaboration Meeting** 20

3<sup>rd</sup> Proposed Experiment




prototypes

# New AD-Target Design (PROTAD) and Testing in HiRadMat (HRMT-48)



### New Core Configuration with variable diameter



# **PROTAD Targets for testing in HiRadMat**

|        | Target drawing | Core module number |                                                        |            |   |   |        |          |   |   |    |
|--------|----------------|--------------------|--------------------------------------------------------|------------|---|---|--------|----------|---|---|----|
| Target | Number         | 1                  | 2                                                      | 3          | 4 | 5 | 6      | 7        | 8 | 9 | 10 |
| #1     | AD_TARAD0055   | I                  | Identical to old design: rods of 3 mm diameter by 5-10 |            |   |   | -10 mn | n lengti | ۱ |   |    |
| #2     | AD_TARAD0056   |                    |                                                        |            |   |   |        |          |   |   |    |
| #3     | AD_TARAD0062   |                    |                                                        |            |   |   |        |          |   |   |    |
| #4     | AD_TARAD0064   |                    |                                                        |            |   |   |        |          |   |   |    |
| #5     | AD_TARAD0070   |                    | S1, S3, S5                                             | S2, S7, S6 |   |   |        |          |   |   |    |
| #6     | AD_TARAD0075   |                    |                                                        |            |   |   |        |          |   |   |    |

| Colour legend |                               |                   |                               |                      |         | Colour Legend     |                |  |
|---------------|-------------------------------|-------------------|-------------------------------|----------------------|---------|-------------------|----------------|--|
| WHS           | Ta WHS Ta 2 mm diam 2 mm diam |                   | TiC                           | S1                   | HQ-GSMM |                   |                |  |
|               | non-ann                       | WHS_ann           | WHS_non-ann                   | WHS_ann              | · · ·   | <b>S</b> 2        | LQ-GSMM        |  |
| TaW           | TaW non-<br>ann               | TaW ann           | 2 mm diam TaW<br>non-ann      | 2 mm diam<br>TaW ann | .2%)    | S3                | HQ-w/o GSMM    |  |
| Plansee       | Ta_Plansee<br>non-ann         | Ta_Plansee<br>ann | Ta_Plansee_ann<br>1400 °C, 1h | TaS                  | W-(1    | <b>S</b> 4        | HQ-w/o GSMM    |  |
| -             | non-ann                       | ann               | 1400 0, 11                    |                      | >       | <b>S</b> 5        | Hot rolled     |  |
| Ir            |                               |                   |                               |                      |         |                   | Hot rolled and |  |
| Ir Tube       | Tube Ir                       |                   |                               |                      | w       | <b>S6</b>         | recrystallized |  |
| TaM           | Tube TaM                      |                   |                               |                      |         | <b>S</b> 7        | Hot rolled     |  |
| tube          | (annealed)                    |                   |                               |                      |         |                   |                |  |
|               |                               |                   |                               |                      |         | High Quality – HQ |                |  |

Low Quality – LQ

**RADIATE Collaboration Meeting** 



20/12/2018

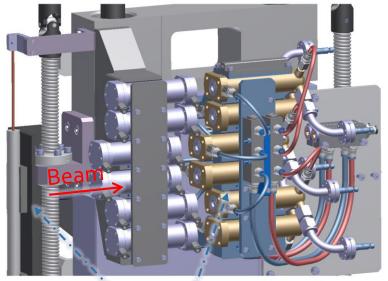
# **PROTAD Targets Manufacturing**

External Ti-6Al-4V Assembly Two independent assemblies • (EBW in the upstream part) Two Strategies Single part 3D-Printed at CERN ourtesy of R. Gerard

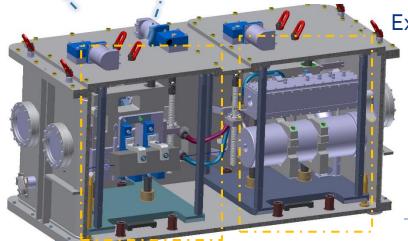
#### **EG Matrix and Cores**

Different procedure from HRMT-42: 2-stage compression to ensure a constant compression ratio




<u>Six targets</u> **Manufactured** in total






### **PROTAD HiRadMat Experiment**

#### PROTAD targets tested within a HiRadMat Multipurpose Experiment







Experiment executed on **28<sup>th</sup>/29<sup>th</sup> September 2018** 

**50 pulses/per** target impacted in 5 targets Target no. 6 received **140 pulses** 4.10<sup>14</sup> POTs in **total POTs** 

> Targets opening and PIEs foreseen during 2019

### "The Ta-degrader": An additional development



# Conclusions

# Extensive R&D activities in the context of new $\bar{p}$ production target

• **Simulations:** Use of hydrocodes, identification of governing phenomena.

### • HiRadMat experiments:

- **1) HRMT-27:** Study the fundamental response of thin rods.
  - Simulations validation and benchmarking. Superior response of Ta.
- 2) HRMT-42: First Target prototyping
  - Spalling fracture in Ta, new interesting type of failure identified.
- 3) HRMT-48 PROTAD Experiment: Real scale target prototyping
- **Manufacturing:** Use of compressed Expanded Graphite, 3-D printed Ti-Grade 5, Ta cladded in Ti...



# **General Relevance for other BIDs**

• The AD-Target is the most dynamically loaded target currently in operation



- **1) Deep understanding of dynamic phenomena** induced by proton beam impacts. Lessons:
  - Importance of pulse length, geometry, excitation of modes
  - Using advanced material models
- 2) Identification of new modes of failure, using new materials (TaW, WTiC, EG...)
- 3) Experience in designing and executing HiRadMat experiments as well as PIEs techniques (i.e. neutron tomography, destructive PIEs at CERN)



### **Future Perspectives**

- Based on the experience of last prototypes, final batch of targets will be manufactured during 2019.
- PIEs after opening the PROTAD targets will define the final core configuration, EG vs isostatic graphite performance.
- Installation of new target design in the renovated AD-Target area (including new design of target & horn positioning trolleys) by the end of 2020.

### New targets operation after CERN's LS2, 2021





# Thanks !

