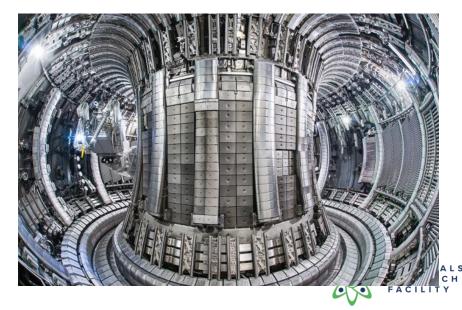
UK Atomic Energy Authority

UKAEA - Materials Research Facility PIE plans for the BeGrid2 samples Slava Kuksenko

.....



MRF is part of the National Nuclear Users Facility (NNUF) and the Sir Henry Royce Institute for Advanced Materials

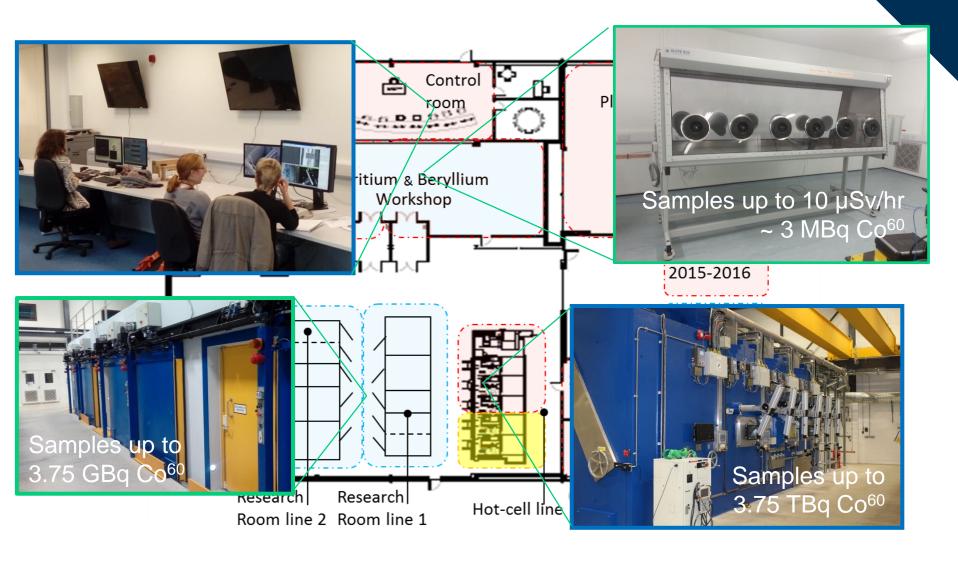
UK atomic energy authority

UKAEA - MRF


New facility for processing and analysis of neutron (and proton) irradiated materials

Open to Universities and Industry

Opened May 2016, currently in commissioning


Nuclear experience (e.g. JET) on a nonlicensed site: total inventory up to 3.75 TBq (Co⁶⁰)

Building layout

UK Atomic Energy Authority

MRF Hot-cell line

The hot-cell line

- Maximum activity up to 3.75 TBq (Co⁶⁰)
- Sample reduction and fabrication
 - Slow cut saw
 - Shear cutter
 - Embedding

- Grinding
- Polishing
- Cleaning

- Gamma spectrometry
- Optical microscopy
- weighing

In-cell processes

Currently available

To be delivered

✓ Cutting

- Slow cut saw
- EDM wire (straight cuts only)
- EDM die sink

✓ Grinding & polishing

- Conventional
- Electropolishing

✓ Mounting

- Hot-resin mounting
- Cold resin mounting
- Crystal bond mounting

✓ Sample evaluation

- Weighting
- Optical microscopy 20-220x
- Optical microscopy 200-470x

✓ Sample storage

- In air
- Inert / vacuum
- ✓ Gamma spectrometry
 - Incoming materials
 - Waste finger printing
- ✓ Waste processing
 - Sorting ILW/LLW
 - Drying out water based waste
 - Solidifying liquid waste
 - Separating resin from samples

MRF Research Rooms

- 10 fully independent shielded rooms
- Maximum activity up to 3.75 GBq (Co⁶⁰)
- Scientific analysis and testing
- Manned access (no access if sample is exposed)
- Remote control from research rooms (ops) and from MRF control room (scientific evaluation)
- Containment connected to nuclear
 ventilation around experiment if required

MRF Research Rooms

Working with active samples in RR

- Equipment is configured, calibrated, prepared for specific test
- Active sample is brought into RR with shielded trolley
- Active sample is remotely transferred into shielded castle
- Shielded trolley can be removed from RR
- Active sample is remotely mounted into equipment
- Control of equipment is handed over to control room
- Tests are conducted
- Handover back to MRF technician
- Sample is transferred back to shielded castle
- Shielded trolley brought back into RR
- Active sample is remotely transferred into shielded trolley
- Active sample is removed from RR

Scientific capability

To be commissioned for use on active materials:

• Overview scientific equipment

Glovebox Research room (3.75GBq) Hot-cell (3.75TBq)

				`	
	2013/14	2015/16	2016/17	2017/18	2018/19
Microstructural analysis	FEGSEM, FIB	AFM, PMI XRF		CSLM Raman, WDS	XRD
Mechanical testing	Nanoindenter	Static load frame	Dynamic load frame	In-situ SEM frame, instr. indenter, DIC, EPD, IET	Small punch die, ultrasonic fatigue, high T testing for load frames
Thermo-physical characterisation	TDS	Gas Impregnation Setup	Dilatometer, LFA, TGA/DSC	Eddy current probe	Gas pycnometry
Advanced sample preparation		Electro- polishing, glovebox	Lab scale EDM, PIPS II, twinjet polisher, tube furnace	Sputter coater, dimple grinder, low activity prep	Diamond wire cutting, Lab scale EDM (hot- cell), electro- polishing, add. furnaces
					MATERIALS

Scientific Equipment

UK Atomic Energy Authority

Microstructural Characterisation

Microstructural Characterisation

Currently a GK Atomic Energy Authority Delivered in 2017/18

To be delivered 2018/19

FEGSEM

Tescan Mira XH EDX, EBSD, TKD, WDS

Dual beam FIB FEI Helios GIS: Pt, W, C Nano-manipulator for lift outs

AFM

Veeco D3100

PMI XRF

Olympus delta premium

Laser Confocal Scanning Microscope – RAMAN spectrometry

XRD goniometer

Thermo-physical Analysis

Currently a Currently a Delivered in 2017/18 To be delivered 2018/19

Thermal Desorption Spectroscopy Hiden TPD workstation Up to 1000°C

Gas Impregnation Technique

Ar, N₂, Air, He, D₂, Tritium Ion energy < 500 eV, RT – 500° C

Dilatometer

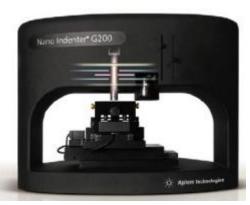
Linseis L75V, dual pushrod $-150^{\circ}C - 600^{\circ}C$ and RT $- 2000^{\circ}C$

Laser Flash Analyser Linseis LFA 1000 -100°C – 500°C and RT – 2000°C TGA/DSC Linseis STA PT1600

 -150° C – 500°C and RT – 1600°C

Gas pycnometry

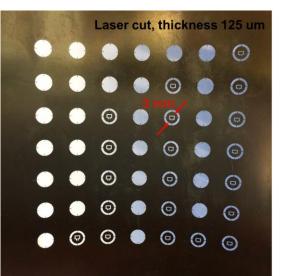
Mechanical Testing


Currently a K Atomic Energy Authority To be delivered 2018/19

Proposed for 2019/20

Nanoindenter Agilent G200 Static load frame 10 kN Shimadzu AGS-x Environmental chamber for up to 800°C Dynamic load frame 15 kN TA Electroforce 3500 Environmental chamber for up to 800°C Vacuum chamber with induction heating In-situ SEM load frame 5 kN DEBEN MTEST Clamp heating up to 600°C Instrumented indenter High Cycle Fatigue Setup

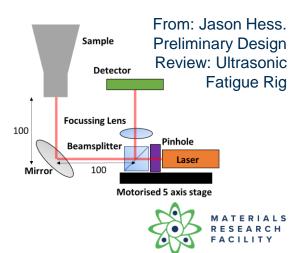
DIC strain measuring system Small-punch testing Impulse excitation testing



Ultrasonic Fatigue Rig

The meso-fatigue rig installation in the MRF (2018).

UK Atomic Energy Authority



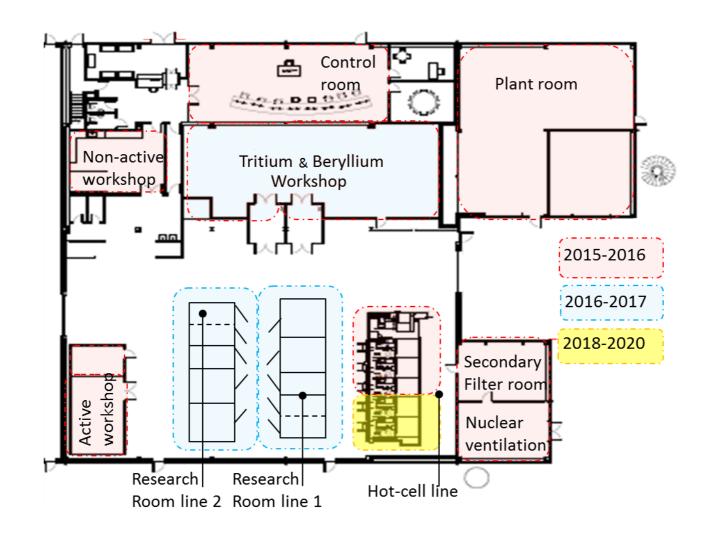
FE Modelling

Ultrasonic resonant VHCF tests in the University of Oxford

- Existing setup at Oxford (Wilkinson, Gong)
- Laser cut 3mm discs, with 200 µm cantilevers
- To be integrated in active environment (Research Room)
- Current setup for RT is being replicated at MRF
- 20 kHz = 10⁸ cycles in 1.5 h

Sample Prep

Non active Sample prep lab Cutting, grinding, polishing **Electro-polishing Optical microscopy** Non active sputter coater **PIPS-II** ion polisher Lab scale EDM 3mm disc punch 3 zone tube furnace 1200°C Dimple grinder Glovebox sputter coater Glovebox cutting, grinding, polishing Hot-cell labscale EDM Hot-cell electro-polishing Additional furnaces (vacuum)



Investment Roadmap - 2016/17 to 2020/21

	2016/17 (£2M)	2017/18 (£2M)	2018/19 (£5M)	2019/20 (£5M)	2020/21 (£3M)				
HOT CELLS (£3M)			NNUF	NNUF	NNUF				
MICROSTRUCTURAL CHARACTERISATION (£3M)		Royce	Royce	NNUF					
SECOND FIB (£2M)			NNUF Ord shielded						
SHIELDING & OTHER ADAPTATIONS (£2.5M)	UKAEA/Roy	yce Ro	oyce ^{3rd shielded rooms}						
MECHANICAL TESTING (£2M)	Royce	Royce	Royce	NNUF					
THERMO-PHYSICAL TESTING (£0.5M)	Royce	Royce		NNUF					
SAMPLE PREPARATION (£1M)	Royce	Royce	Royce	NNUF					
ADAPT & EXTEND BUILDING (£5M)	Da	om litero en to boucies		BEIS	e rehive				
ONGOING SUPPORTING ACTIVITIES									

Investment: building extensions

Conclusion

UK Atomic Energy Authority

Overall status on MRF facility Hot-cell line close of going active Research Rooms nearing completion Sample handling systems for RR are currently being developed Sample prep in glovebox planned for this year

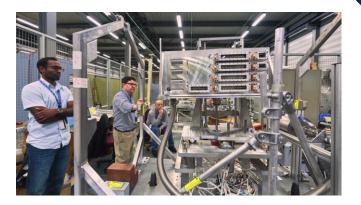
Overall status on MRF scientific equipment

The past 1.5 year MRF expanded from 4 instruments to > 15 instruments, additional techniques will follow in coming years

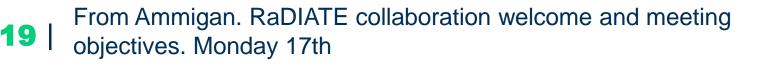
Large majority of equipment is currently available for non-active and low active work

Implementation for higher activity work will be a staged process

UK Atomic Energy i Authority


In-beam thermal shock test completed in Oct. 2018

- Experiment carried out at CERN's HiRadMat facility
- Comparison of thermal shock response between non-irradiated and previously irradiated materials from BNL BLIP (Be, C, Ti, Si, SiC-coated C)
 - First/unique test with activated materials at HiRadMat
- Explore novel materials such as metal foams (C, SiC) and electrospun fiber mats (Al₂O₃, ZrO₂)


Electrospinning concept

SEM as-spun Al₂O₃

BeGRID2 - Upcoming PIE work

ARRAY		Hi	gh-do	se Irr	adiate	ed Spe	cim	ens (box	1.1)	
1	PF-60	S-65F	S-200F	S-200FH	low dose S-200FH	low dose PF-60	РОСО	low dose IG-430			

	_		L	ow-de	ose No	on-irra	adiate	ed Sp	ecim	nens	(bo)	(1.2))					Slug
PF-60 (1)	PF-60 (2)	S-65F (1)	S-65F (2)	S-200F (1)	S-200F (2)	S-200FH (1)	S-200FH (2)	GC20 (1)	GC20 (2)	ZXF-5Q (1)	ZXF-5Q (2)	IG-430 (1)	IG-430 (2)	RVC (1)	RVC (2)	SiGraFlex	SiGraFlex	ZXF-5Q

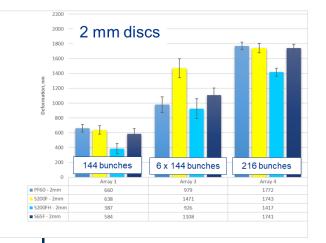
ARRAY		Hi	igh-do	se Irr	adiate	ed Spe	ecim	ens (box	2.1)	
2	PF-60	S-65F	S-200F	S-200FH	low dose S-200FH	low dose PF-60	low dose POCO	low dose IG-430			

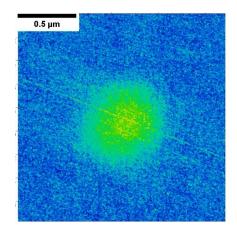
ARRAY		Hi	gh-do	se Irr	adiate	ed Spe	cime	ens (box	3.1)	-
3	Ti alloy	Ti alloy	SiC-C (no.4)	Silicon	Silicon						

ARRAY			Low-	dose	Novel	Mate	erials	(bo	x 4.1	.)	
4	SiO2/ZrO2 spun (1)	ZrO2 spun (1)	ZrO2 spun (2)								

	-	_	L	ow-de	ose No	on-irra	adiate	ed Sp	ecim	nens	(bo>	(2.2))					Slug
PF-60 (1)	PF-60 (2)	S-65F (1)	S-65F (2)	S-200F (1)	S-200F (2)	S-200FH (1)	S-200FH (2)	GC20 (1)	GC20 (2)	ZXF-5Q (1)	ZXF-5Q (2)	IG-430 (1)	IG-430 (2)	RVC (1)	RVC (2)	SiGraFlex	SiGraFlex	ZXF-5Q

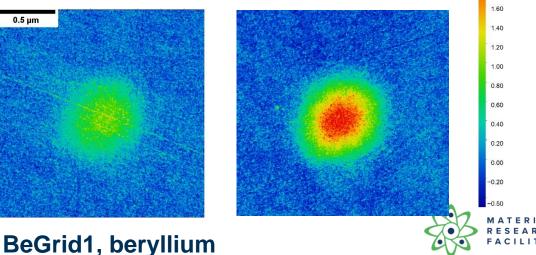
		_	Low	-dose	Solid	, foan	n and	nove	el Ma	ateri	als (l	box	3.2)			_	Slu
SiC solid (1)	SiC solid (2)	SiC foam (1)	SiC foam (2)	Al2O3 solid (1)	Al2O3 solid (2)	ZrO2 solid (1)	ZrO2 solid (2)	SiO2 spun (1)	ZrO2 spun (1)	ZrO2 spun (2)	Ti alloy	Ti alloy	SiC-C (no.3)	Silicon	Silicon		ZXF-5Q


siC solid (1) SiC solid (2) SiC foam (1) SiC foam (2) Al2O3 solid (1) Al2O3 solid (2) ZrO2 solid (1) Be solid 1 Be solid 2 Be solid 2 Br Solid 2 Br Solid 2 Br Solid 2 Br Solid 2			-	-	Low-	dose S	Solid 8	& foar	n Ma	ateri	als (l	box	4.2)	-	-	-	Slug
	solid (1	solid (2	foam	foam (2	3 solid	3 solid	solid	solid	e solid	e solid							


UK Atomic Energy

Upcoming PIE work

alpha300 R – Confocal Raman Imaging


- **Topographic Raman Imaging ("TrueSurface** Microscopy")
- Confocal microscopy in reflected light
- Fluorescent and Raman spectroscopy
- Large area mapping: up to 25 × 25 mm2
- 3D layer mapping
- Automated sample positioning: by X, Y and Z axes ۲

2.00 µm 1.80

Profilometry

- The out-of-plane deformation of the samples will be measured using Confocal Laser Raman Microscopy
- Topography of areas of the HiRadMat facility beam exposure will be collected.
- Profilometry will be performed on the samples as exposed at CERN, without removing them from the frames

SCANNING ELECTRON MICROSCOPY

- Exposed samples will be investigated to detect consequences of the HiRadMat facility beam exposure.
- Selected samples will be removed from the frames and put on the SEM pin-stubs. Carbon tape or silver DAG will be used for samples fixture.
- Microscopy images of the exposed areas will be collected. Localised deformation and surface fracture images (if exists and detectable) will be collected.

UK Atomic Energy Authority

THANK YOU

