CERN's Beam Intercepting Devices for Projects and Operation

Antonio Perillo-Marcone

on behalf of EN-STI

STI Group (Engneering Department)

EN-STI-TCD Mandate

- Responsible for all beam-intercepting devices (BIDs)
- Conceptual studies, manufacturing, installation and maintenance of mechanical systems of BIDs
 - Thermo-mechanical studies of all BIDs
 - R&D activities
 - Continuous development of expertise in materials under extreme operation and mixed field irradiation
- Technical coordination and supervision of n_TOF and AD target areas
- Design, testing and operation of focusing magnetic horns
- Remote handling compliant design of BIDs

Beam Intercepting Devices

Linac 4 Dump

C. Maglioni D. Grenier

Linac 4 Dump Core

PS Booster Devices

Max beam intensity: 1E14 p+/pulse Beam energy: 2 GeV

PSB Dump

- Pulse period: 1.2 s

Design parameters:

-

- Max. Average power to dump : 9.44 kW

Managed by **A. Perillo-Marcone**

PSB Dump Core

0.000e+000 [m s^-1]

ISOLDE: a radioisotope factory

Two target stations operating alternatively

Managed by

R. Catherall

- General Purpose Separator (GPS) and High Resolution Separator (HRS)
- Nearly 1300 isotopes/isomers available from 73 chemical elements at 60 keV → largest choice for any ISOL facility in the world
- Over 1300 users

10

17/12/2018

The ISOL* production method

17/12/2018

ISOLDE Target Production 2018

ION SOURCES

Total targets assembled end of 2018 : 49

- Delivered to ISOLDE: **29**
- Delivered to MEDICIS: **10** + 2 in December
- Used for development: 8 (16%)

• 10 different materials

3%

- Mostly carbides and metal foils
- Most popular: uranium carbide
- 7 different ion sources
- LIST and negative ion source back in action

26%

Target Handling with Robots

Several Different Targets

Neutron induced fission from actinide targets

Actual Target Converter Assembly at ISOLDE

CERN – MEDICIS

Non-conventional radioisotopes for medical research*

*La plateforme de recherche biomédicale CERN-MEDICIS

PS Devices

Total energy on the dump 3.2 kJ 415°C

TT70

LHC 25 ns 2015

8.7 × 10¹²

Minimum 4 pulses

2.1 µs

3.6 s

1.85 x 0.98

26 GeV/c

76

approx. 4 ms

35 kJ

East hall

BEAM

Particles

Pulse Intensity:

Continuous pulses to study

Beam revolution time:

Pulse Period (Basic Period):

Rms size ($\sigma_h \times \sigma_v$) [mm × mm]

Max momentum

Intensity density* **Total shaving time**

Total beam energy

T_{max} on dump

PS Dump – Proposed Design

PS Dump Kinematics

Safety devices, usually designed to withstand one or few pulses

PS Beam Stoppers

Present Situation

- 9 different designs in all the PS complex
- Lack of spare devices
- Poor documentation
- Difficult management of spare parts

Proposed Design

- Adaptable in all areas (fully standard)
- Pneumatic standard actuator with Rad-Hard gaskets
- Shocker in case of fall
- Less efforts on the pneumatic actuator with the vacuum

BEAM PARAMETERS	
Beam energy	26 GeV/c
Number of bunches	6
Total pulse length	1.1 µs
Intensity per pulse	2.3x10 ¹³ particles
Beam size ($\sigma_{\text{horizontal}} / \sigma_{\text{vertical}}$)	1.50 mm / 1.39 mm

Managed by E. Grenier-Boley

East Area – Beam Stoppers

The n_TOF Facility

Water-cooled, pure lead target

22

Future n_TOF Target

N₂-cooled Pb sliced target

- Technologically innovative, but appears the most appealing from a physics as well as technological perspective
- Operational simplification: no high-Z contaminated H₂O, no ionexchangers, etc.

Antiproton Decelerator Target

CERN's Accelerator Complex

- Antiprotons are produced by colliding a 26 GeV/c proton beam with a fixed **target**
- Collected at 3.5 GeV/c by a magnetic horn, focused and injected to the AD-ring

Future AD Target

See C. Torregrosa's presentation on thursday

Substantially more compact (Ø30 mm external diam vs old. Ø 100 mm)

- Pressurized-Air-cooled (5-6 bars) double wall Ti-6Al-4V assembly, with an internal serpentine.
- New core & matrix configuration
 - 1) Larger core diameter (up to 10 mm)
 - 2) Multi-material core configuration (Ta, Ir)
 - 3) Expanded graphite (EG) as matrix material

C. Torregrosa

SPS Devices

A. Perillo-Marcone - RaDIATE 2018

17/12/2018

27

SPS Dump

- Internal Dump
 - Direct effect on SPS operation
- UHV environment
- High average beam power ~260 kW
- Little/no-maintenance possible
- High thermomechanical loads
- Long-term operation (~20 years)
 - Fatigue
 - Irradiation damage

SPS Dump

Future BDF Target

See M. Lamont's (Monday) and E. Lopez/A. Perillo-Marcone's (Thursday) presentations

LHC Devices

Injection Protection Absorbers

Managed by A. Perillo-Marcone

17/12/2018

Collimators

- Different types of collimators
 - Primary (low-Z, MoGr and CFC)
 - Secondary (low-Z, MoGr and CFC)
 - Tertiary (high-Z, W or CuCD)
- Thermo-mechanical loading scenarios
 - Slow losses
 - Nominal operation: 1h BLT (Beam LifeTime)
 - Accidental case: 0.2h BLT (10 s)
 - Direct beam impact (accidental scenarios)
 - Asynchronous beam dump: 8 full LHC bunches
 - Beam injection error: 288 SPS bunches

Managed by

I. Lamas (EN-STI)

In collaboration with EN-MME

Several HiRadMat Experiments

See F. X. Nuiry's presentation on thursday

Thank you for your attention.

